IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i21p8961-d436236.html
   My bibliography  Save this article

Energy Generation Performance of Window-Type Dye-Sensitized Solar Cells by Color and Transmittance

Author

Listed:
  • Jae-Hyang Kim

    (Graduate School, Chonnam National University, Gwangju 61186, Korea)

  • Seung-Hoon Han

    (School of Architecture, Chonnam National University, Gwangju 61186, Korea)

Abstract

Previous research has shown Dye-Sensitized Solar Cells (DSSCs) to have excellent applicability for building exterior materials and windows, because they can be controlled in terms of Visible Light Transmittance (VLT) and color, and thus have good variability. However, windows with solar cells may not show ideal energy generation efficiency. This depends on a variety of factors, such as window composition, shadow, and light scattering. In this paper, through mock-up tests, the energy generation of DSSCs with various transmittances and colors was measured. Red, Green, and Blue (RGB)-based DSSCs of 7, 10, and 20% VLT were used, and P max values were measured for solar radiation for comparison. As a result of the comparison, performance estimates were made for each color and VLT when used as a window. In this study, the electrical energy generated by DSSCs was measured in an environment applied to a real window, not a virtual environment. Therefore, the study is meaningful, in that data that can estimate performance when applying various types of DSSCs in a real-world window environment were created.

Suggested Citation

  • Jae-Hyang Kim & Seung-Hoon Han, 2020. "Energy Generation Performance of Window-Type Dye-Sensitized Solar Cells by Color and Transmittance," Sustainability, MDPI, vol. 12(21), pages 1-13, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:8961-:d:436236
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/21/8961/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/21/8961/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jae-Hyang Kim & Seung-Hoon Han, 2019. "A Quantification Procedure for Interior Performance of Architectural Openings Associated with Dye-Sensitized Solar Cells," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    2. Lee, Hyo Mun & Yoon, Jong Ho, 2018. "Power performance analysis of a transparent DSSC BIPV window based on 2 year measurement data in a full-scale mock-up," Applied Energy, Elsevier, vol. 225(C), pages 1013-1021.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    2. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    3. Jouttijärvi, Sami & Lobaccaro, Gabriele & Kamppinen, Aleksi & Miettunen, Kati, 2022. "Benefits of bifacial solar cells combined with low voltage power grids at high latitudes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Shi, Shaohang & Zhu, Ning & Wu, Shuangdui & Song, Yehao, 2024. "Evaluation and analysis of transmitted daylight color quality for different colored semi-transparent PV glazing," Renewable Energy, Elsevier, vol. 222(C).
    5. Kyung-Woo Lee & Hyo-Mun Lee & Ru-Da Lee & Dong-Su Kim & Jong-Ho Yoon, 2021. "The Impact of Cracks in BIPV Modules on Power Outputs: A Case Study Based on Measured and Simulated Data," Energies, MDPI, vol. 14(4), pages 1-17, February.
    6. Shaohang Shi & Jingfen Sun & Mengjia Liu & Xinxing Chen & Weizhi Gao & Yehao Song, 2022. "Energy-Saving Potential Comparison of Different Photovoltaic Integrated Shading Devices (PVSDs) for Single-Story and Multi-Story Buildings," Energies, MDPI, vol. 15(23), pages 1-23, December.
    7. Shaohang Shi & Ning Zhu, 2023. "Challenges and Optimization of Building-Integrated Photovoltaics (BIPV) Windows: A Review," Sustainability, MDPI, vol. 15(22), pages 1-30, November.
    8. Bempah, Kwabena Opoku & Kwon, Kyoungjun & Kim, Katherine A., 2019. "Experimental study of photovoltaic panel mounting configurations for tube-shaped structures," Applied Energy, Elsevier, vol. 240(C), pages 754-765.
    9. Jing, Yifan & Zhu, Li & Yin, Baoquan & Li, Fangfang, 2023. "Evaluating the PV system expansion potential of existing integrated energy parks: A case study in North China," Applied Energy, Elsevier, vol. 330(PA).
    10. Wang, Chuyao & Yang, Hongxing & Ji, Jie, 2023. "Investigation on overall energy performance of a novel multi-functional PV/T window," Applied Energy, Elsevier, vol. 352(C).
    11. Li, Meng & Ma, Tao & Liu, Jiaying & Li, Huanhuan & Xu, Yaling & Gu, Wenbo & Shen, Lu, 2019. "Numerical and experimental investigation of precast concrete facade integrated with solar photovoltaic panels," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Gonçalves, Juliana E. & van Hooff, Twan & Saelens, Dirk, 2021. "Simulating building integrated photovoltaic facades: Comparison to experimental data and evaluation of modelling complexity," Applied Energy, Elsevier, vol. 281(C).
    13. Sourava Chandra Pradhan & Jayadev Velore & Sruthi Meledath Meethal & Suraj Soman, 2023. "Fundamental Understanding of Dye Coverage and Performance in Dye-Sensitized Solar Cells Using Copper Electrolyte," Energies, MDPI, vol. 16(19), pages 1-14, September.
    14. Hyunho Lee & Hyung‐Jun Song, 2021. "Current status and perspective of colored photovoltaic modules," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(6), November.
    15. de Queiroz Corrêa, Luiza & Bagnis, Diego & Rabelo Melo Franco, Pedro & Ferreira da Costa Junior, Esly & Oliveira Souza da Costa, Andréa, 2024. "Evaluating energy generation of a building-integrated organic photovoltaic vertical façade: A case study of Latin America's pioneering installation," Renewable Energy, Elsevier, vol. 220(C).
    16. Selvaraj, Prabhakaran & Ghosh, Aritra & Mallick, Tapas K. & Sundaram, Senthilarasu, 2019. "Investigation of semi-transparent dye-sensitized solar cells for fenestration integration," Renewable Energy, Elsevier, vol. 141(C), pages 516-525.
    17. López-Escalante, M.C. & Navarrete-Astorga, E. & Gabás Perez, M. & Ramos- Barrado, J.R. & Martín, F., 2020. "Photovoltaic modules designed for architectural integration without negative performance consequences," Applied Energy, Elsevier, vol. 279(C).
    18. Sun, Yanyi & Shanks, Katie & Baig, Hasan & Zhang, Wei & Hao, Xia & Li, Yongxue & He, Bo & Wilson, Robin & Liu, Hao & Sundaram, Senthilarasu & Zhang, Jingquan & Xie, Lingzhi & Mallick, Tapas & Wu, Yupe, 2018. "Integrated semi-transparent cadmium telluride photovoltaic glazing into windows: Energy and daylight performance for different architecture designs," Applied Energy, Elsevier, vol. 231(C), pages 972-984.
    19. Yu, Guoqing & Yang, Hongxing & Luo, Daina & Cheng, Xu & Ansah, Mark Kyeredey, 2021. "A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    20. Jae-Hyang Kim & Jongin Hong & Seung-Hoon Han, 2021. "Optimized Physical Properties of Electrochromic Smart Windows to Reduce Cooling and Heating Loads of Office Buildings," Sustainability, MDPI, vol. 13(4), pages 1-30, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:8961-:d:436236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.