Causal Random Forests Model Using Instrumental Variable Quantile Regression
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Alberto Abadie & Joshua Angrist & Guido Imbens, 2002.
"Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings,"
Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
- Alberto Abadie & Joshua Angrist & Guido Imbens, 1999. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Working papers 99-16, Massachusetts Institute of Technology (MIT), Department of Economics.
- Stefan Wager & Susan Athey, 2018.
"Estimation and Inference of Heterogeneous Treatment Effects using Random Forests,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
- Wager, Stefan & Athey, Susan, 2017. "Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests," Research Papers 3576, Stanford University, Graduate School of Business.
- O'Neill, E. & Weeks, M., 2018. "Causal Tree Estimation of Heterogeneous Household Response to Time-Of-Use Electricity Pricing Schemes," Cambridge Working Papers in Economics 1865, Faculty of Economics, University of Cambridge.
- Strittmatter, Anthony, 2019. "Heterogeneous earnings effects of the job corps by gender: A translated quantile approach," Labour Economics, Elsevier, vol. 61(C).
- Athey, Susan & Imbens, Guido W., 2019.
"Machine Learning Methods Economists Should Know About,"
Research Papers
3776, Stanford University, Graduate School of Business.
- Susan Athey & Guido Imbens, 2019. "Machine Learning Methods Economists Should Know About," Papers 1903.10075, arXiv.org.
- Victor Chernozhukov & Christian Hansen, 2004. "The Effects of 401(K) Participation on the Wealth Distribution: An Instrumental Quantile Regression Analysis," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 735-751, August.
- Chernozhukov, Victor & Hansen, Christian, 2008. "Instrumental variable quantile regression: A robust inference approach," Journal of Econometrics, Elsevier, vol. 142(1), pages 379-398, January.
- Anthony Strittmatter, 2019. "Heterogeneous Earnings Effects of the Job Corps by Gender Earnings: A Translated Quantile Approach," Papers 1908.08721, arXiv.org.
- Duncan Sheppard Gilchrist & Emily Glassberg Sands, 2016. "Something to Talk About: Social Spillovers in Movie Consumption," Journal of Political Economy, University of Chicago Press, vol. 124(5), pages 1339-1382.
- Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
- Jonathan M.V. Davis & Sara B. Heller, 2017. "Using Causal Forests to Predict Treatment Heterogeneity: An Application to Summer Jobs," American Economic Review, American Economic Association, vol. 107(5), pages 546-550, May.
- Brigham R. Frandsen & Lars J. Lefgren, 2018. "Testing Rank Similarity," The Review of Economics and Statistics, MIT Press, vol. 100(1), pages 86-91, March.
- Jau-er Chen & Chien-Hsun Huang & Jia-Jyun Tien, 2021.
"Debiased/Double Machine Learning for Instrumental Variable Quantile Regressions,"
Econometrics, MDPI, vol. 9(2), pages 1-18, April.
- Jau-er Chen & Chien-Hsun Huang & Jia-Jyun Tien, 2019. "Debiased/Double Machine Learning for Instrumental Variable Quantile Regressions," Papers 1909.12592, arXiv.org, revised Feb 2021.
- Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
- Chiou, Yan-Yu & Chen, Mei-Yuan & Chen, Jau-er, 2018. "Nonparametric regression with multiple thresholds: Estimation and inference," Journal of Econometrics, Elsevier, vol. 206(2), pages 472-514.
- Yan-Yu Chiou & Mei-Yuan Chen & Jau-er Chen, 2017. "Nonparametric Regression with Multiple Thresholds: Estimation and Inference," Papers 1705.09418, arXiv.org, revised Feb 2018.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jau-er Chen & Chien-Hsun Huang & Jia-Jyun Tien, 2021.
"Debiased/Double Machine Learning for Instrumental Variable Quantile Regressions,"
Econometrics, MDPI, vol. 9(2), pages 1-18, April.
- Jau-er Chen & Chien-Hsun Huang & Jia-Jyun Tien, 2019. "Debiased/Double Machine Learning for Instrumental Variable Quantile Regressions," Papers 1909.12592, arXiv.org, revised Feb 2021.
- Zhouwei Wang & Qicheng Zhao & Min Zhu & Tao Pang, 2020. "Jump Aggregation, Volatility Prediction, and Nonlinear Estimation of Banks’ Sustainability Risk," Sustainability, MDPI, vol. 12(21), pages 1-17, October.
- Hui-Ching Chuang & Jau-er Chen, 2023. "Exploring Industry-Distress Effects on Loan Recovery: A Double Machine Learning Approach for Quantiles," Econometrics, MDPI, vol. 11(1), pages 1-20, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jau-er Chen & Chien-Hsun Huang & Jia-Jyun Tien, 2021.
"Debiased/Double Machine Learning for Instrumental Variable Quantile Regressions,"
Econometrics, MDPI, vol. 9(2), pages 1-18, April.
- Jau-er Chen & Chien-Hsun Huang & Jia-Jyun Tien, 2019. "Debiased/Double Machine Learning for Instrumental Variable Quantile Regressions," Papers 1909.12592, arXiv.org, revised Feb 2021.
- Daniel Goller, 2023.
"Analysing a built-in advantage in asymmetric darts contests using causal machine learning,"
Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.
- Daniel Goller, 2020. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Papers 2008.07165, arXiv.org.
- Goller, Daniel, 2020. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Economics Working Paper Series 2013, University of St. Gallen, School of Economics and Political Science.
- Hiroaki Kaido & Kaspar Wüthrich, 2021.
"Decentralization estimators for instrumental variable quantile regression models,"
Quantitative Economics, Econometric Society, vol. 12(2), pages 443-475, May.
- Hiroaki Kaido & Kaspar Wuthrich, 2018. "Decentralization Estimators for Instrumental Variable Quantile Regression Models," Papers 1812.10925, arXiv.org, revised Sep 2020.
- Hiroaki Kaido & Kaspar Wüthrich, 2018. "Decentralization estimators for instrumental variable quantile regression models," CeMMAP working papers CWP72/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Kaido, Hiroaki & Wüthrich, Kaspar, 2021. "Decentralization estimators for instrumental variable quantile regression models," University of California at San Diego, Economics Working Paper Series qt362921wv, Department of Economics, UC San Diego.
- Hiroaki Kaido & Kaspar Wüthrich, 2019. "Decentralization estimators for instrumental variable quantile regression models," CeMMAP working papers CWP42/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Michael C Knaus, 2022.
"Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation],"
The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
- Knaus, Michael C., 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Economics Working Paper Series 2004, University of St. Gallen, School of Economics and Political Science.
- Knaus, Michael C., 2020. "Double Machine Learning Based Program Evaluation under Unconfoundedness," IZA Discussion Papers 13051, Institute of Labor Economics (IZA).
- Michael C. Knaus, 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Papers 2003.03191, arXiv.org, revised Jun 2022.
- Victor Chernozhukov & Christian Hansen & Kaspar Wuthrich, 2020. "Instrumental Variable Quantile Regression," Papers 2009.00436, arXiv.org.
- Ajit Desai, 2023.
"Machine Learning for Economics Research: When What and How?,"
Papers
2304.00086, arXiv.org, revised Apr 2023.
- Ajit Desai, 2023. "Machine learning for economics research: when, what and how," Staff Analytical Notes 2023-16, Bank of Canada.
- Goller, Daniel & Harrer, Tamara & Lechner, Michael & Wolff, Joachim, 2021.
"Active labour market policies for the long-term unemployed: New evidence from causal machine learning,"
Economics Working Paper Series
2108, University of St. Gallen, School of Economics and Political Science.
- Daniel Goller & Tamara Harrer & Michael Lechner & Joachim Wolff, 2021. "Active labour market policies for the long-term unemployed: New evidence from causal machine learning," Papers 2106.10141, arXiv.org, revised May 2023.
- Goller, Daniel & Harrer, Tamara & Lechner, Michael & Wolff, Joachim, 2021. "Active Labour Market Policies for the Long-Term Unemployed: New Evidence from Causal Machine Learning," IZA Discussion Papers 14486, Institute of Labor Economics (IZA).
- Bola Amoke Awotide & Adebayo Ogunniyi & Kehinde Oluseyi Olagunju & Lateef Olalekan Bello & Amadou Youssouf Coulibaly & Alexander Nimo Wiredu & Bourémo Kone & Aly Ahamadou & Victor Manyong & Tahirou Ab, 2022. "Evaluating the Heterogeneous Impacts of Adoption of Climate-Smart Agricultural Technologies on Rural Households’ Welfare in Mali," Agriculture, MDPI, vol. 12(11), pages 1-16, November.
- Kaspar Wüthrich, 2020.
"A Comparison of Two Quantile Models With Endogeneity,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 443-456, April.
- Kaspar W thrich, 2014. "A Comparison of two Quantile Models with Endogeneity," Diskussionsschriften dp1408, Universitaet Bern, Departement Volkswirtschaft.
- Wüthrich, Kaspar, 2020. "A Comparison of Two Quantile Models With Endogeneity," University of California at San Diego, Economics Working Paper Series qt0q43931f, Department of Economics, UC San Diego.
- Strittmatter, Anthony, 2023. "What is the value added by using causal machine learning methods in a welfare experiment evaluation?," Labour Economics, Elsevier, vol. 84(C).
- Axenbeck, Janna & Berner, Anne & Kneib, Thomas, 2022. "What drives the relationship between digitalization and industrial energy demand? Exploring firm-level heterogeneity," ZEW Discussion Papers 22-059, ZEW - Leibniz Centre for European Economic Research.
- Wüthrich, Kaspar, 2019.
"A closed-form estimator for quantile treatment effects with endogeneity,"
Journal of Econometrics, Elsevier, vol. 210(2), pages 219-235.
- Wüthrich, Kaspar, 2019. "A closed-form estimator for quantile treatment effects with endogeneity," University of California at San Diego, Economics Working Paper Series qt99n9197q, Department of Economics, UC San Diego.
- Lundberg, Ian & Brand, Jennie E. & Jeon, Nanum, 2022. "Researcher reasoning meets computational capacity: Machine learning for social science," SocArXiv s5zc8, Center for Open Science.
- Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Muller, Christophe, 2018.
"Heterogeneity and nonconstant effect in two-stage quantile regression,"
Econometrics and Statistics, Elsevier, vol. 8(C), pages 3-12.
- Christophe Muller, 2017. "Heterogeneity and Non-Constant Effect in Two-Stage Quantile Regression," Working Papers halshs-01157552, HAL.
- Christophe Muller, 2018. "Heterogeneity and nonconstant effect in two-stage quantile regression," Post-Print hal-01647474, HAL.
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022.
"Urban economics in a historical perspective: Recovering data with machine learning,"
Regional Science and Urban Economics, Elsevier, vol. 94(C).
- Gobillon, Laurent & Combes, Pierre-Philippe & Zylberberg, Yanos, 2020. "Urban economics in a historical perspective: Recovering data with machine learning," CEPR Discussion Papers 15308, C.E.P.R. Discussion Papers.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," PSE-Ecole d'économie de Paris (Postprint) halshs-03673240, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," Working Papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," Post-Print halshs-03673240, HAL.
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2021. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," IZA Discussion Papers 14392, Institute of Labor Economics (IZA).
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," PSE Working Papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," SciencePo Working papers Main halshs-03673240, HAL.
- Kaplan, David M. & Sun, Yixiao, 2017.
"Smoothed Estimating Equations For Instrumental Variables Quantile Regression,"
Econometric Theory, Cambridge University Press, vol. 33(1), pages 105-157, February.
- Kaplan, David M. & Sun, Yixiao, 2012. "Smoothed Estimating Equations For Instrumental Variables Quantile Regression," University of California at San Diego, Economics Working Paper Series qt888657tp, Department of Economics, UC San Diego.
- David M. Kaplan & Yixiao Sun, 2016. "Smoothed estimating equations for instrumental variables quantile regression," Papers 1609.09033, arXiv.org.
- David M. Kaplan & Yixiao Sun, 2013. "Smoothed Estimating Equations for Instrumental Variables Quantile Regression," Working Papers 1314, Department of Economics, University of Missouri.
- Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Undral Byambadalai & Tatsushi Oka & Shota Yasui, 2024. "Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction," Papers 2407.16037, arXiv.org.
- Pons Rotger, Gabriel & Rosholm, Michael, 2020. "The Role of Beliefs in Long Sickness Absence: Experimental Evidence from a Psychological Intervention," IZA Discussion Papers 13582, Institute of Labor Economics (IZA).
More about this item
Keywords
quantile treatment effect; instrumental variable; quantile regression; causal machine learning; random forests;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:7:y:2019:i:4:p:49-:d:298392. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.