IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i14p5628-d383862.html
   My bibliography  Save this article

Fresh and Hardened Properties of Extrusion-Based 3D-Printed Cementitious Materials: A Review

Author

Listed:
  • Zhanzhao Li

    (Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
    School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China)

  • Maryam Hojati

    (Department of Civil, Construction, and Environmental Engineering, The University of New Mexico, Albuquerque, NM 87131, USA)

  • Zhengyu Wu

    (Department of Architecture Engineering, The Pennsylvania State University, University Park, PA 16802, USA)

  • Jonathon Piasente

    (Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA)

  • Negar Ashrafi

    (Department of Architecture, The Pennsylvania State University, University Park, PA 16802, USA)

  • José P. Duarte

    (Department of Architecture, The Pennsylvania State University, University Park, PA 16802, USA)

  • Shadi Nazarian

    (Department of Architecture, The Pennsylvania State University, University Park, PA 16802, USA)

  • Sven G. Bilén

    (School of Engineering Design, Technology, and Professional Programs, The Pennsylvania State University, University Park, PA 16802, USA)

  • Ali M. Memari

    (Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
    Department of Architecture Engineering, The Pennsylvania State University, University Park, PA 16802, USA)

  • Aleksandra Radlińska

    (Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA)

Abstract

3D-printing of cementitious materials is an innovative construction approach with which building elements can be constructed without the use of formwork. Despite potential benefits in the construction industry, it introduces various engineering challenges from the material point of view. This paper reviews the properties of extrusion-based 3D-printed cementitious materials in both fresh and hardened states. Four main properties of fresh-state printing materials are addressed: flowability, extrudability, buildability, and open time, along with hardened properties, including density, compressive strength, flexural strength, tensile bond strength, shrinkage, and cracking. Experimental testing and effective factors of each property are covered, and a mix design procedure is proposed. The main objective of this paper is to provide an overview of the recent development in 3D-printing of cementitious materials and to identify the research gaps that need further investigation.

Suggested Citation

  • Zhanzhao Li & Maryam Hojati & Zhengyu Wu & Jonathon Piasente & Negar Ashrafi & José P. Duarte & Shadi Nazarian & Sven G. Bilén & Ali M. Memari & Aleksandra Radlińska, 2020. "Fresh and Hardened Properties of Extrusion-Based 3D-Printed Cementitious Materials: A Review," Sustainability, MDPI, vol. 12(14), pages 1-34, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5628-:d:383862
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/14/5628/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/14/5628/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Behrokh Khoshnevis & Dooil Hwang & Ke-Thia Yao & Zhenghao Yeh, 2006. "Mega-scale fabrication by Contour Crafting," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 1(3), pages 301-320.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana S. Guimarães & João M. P. Q. Delgado & Sandra S. Lucas, 2021. "Advanced Manufacturing in Civil Engineering," Energies, MDPI, vol. 14(15), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Reza Khosravani & Azadeh Haghighi, 2022. "Large-Scale Automated Additive Construction: Overview, Robotic Solutions, Sustainability, and Future Prospect," Sustainability, MDPI, vol. 14(15), pages 1-30, August.
    2. Maria Kaszyńska & Szymon Skibicki & Marcin Hoffmann, 2020. "3D Concrete Printing for Sustainable Construction," Energies, MDPI, vol. 13(23), pages 1-28, December.
    3. Minsu Cha & Chang-Won Kim & Taehee Lee & Baek-Joong Kim & Hunhee Cho & Taehoon Kim & Hyunsu Lim, 2022. "An Optimal Layout Model of Curved Panels for Using 3D Printing," Sustainability, MDPI, vol. 14(21), pages 1-13, October.
    4. Robert Guamán Rivera & Rodrigo García Alvarado & Alejandro Martínez-Rocamora & Fernando Auat Cheein, 2020. "A Comprehensive Performance Evaluation of Different Mobile Manipulators Used as Displaceable 3D Printers of Building Elements for the Construction Industry," Sustainability, MDPI, vol. 12(11), pages 1-17, May.
    5. Joseph J. Assaad & Abdallah Abou Yassin & Fatima Alsakka & Farook Hamzeh, 2020. "A Modular Approach for Steel Reinforcing of 3D Printed Concrete—Preliminary Study," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    6. Stelladriana Volpe & Valentino Sangiorgio & Andrea Petrella & Armando Coppola & Michele Notarnicola & Francesco Fiorito, 2021. "Building Envelope Prefabricated with 3D Printing Technology," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    7. João Teixeira & Cecília Ogliari Schaefer & Lino Maia & Bárbara Rangel & Rui Neto & Jorge Lino Alves, 2022. "Influence of Supplementary Cementitious Materials on Fresh Properties of 3D Printable Materials," Sustainability, MDPI, vol. 14(7), pages 1-9, March.
    8. Ana S. Guimarães & João M. P. Q. Delgado & Sandra S. Lucas, 2021. "Advanced Manufacturing in Civil Engineering," Energies, MDPI, vol. 14(15), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5628-:d:383862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.