IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i13p5490-d381596.html
   My bibliography  Save this article

“Desigrated”-Desiccant Integrated Façade for the Hot-Humid Climate of Bangkok, Thailand

Author

Listed:
  • Natchai Suwannapruk

    (Urbanism and Building Sciences, Building Technology, Department of Architectural Engineering and Technology, Faculty of Architecture and the Built Environment, Delft University of Technology, 2628 Delft, The Netherlands)

  • Alejandro Prieto

    (Architectural Facades & Products Research Group, Department of Architectural Engineering and Technology, Faculty of Architecture and the Built Environment, Delft University of Technology, 2628 Delft, The Netherlands)

  • Christien Janssen

    (Department of Architectural Engineering and Technology, Faculty of Architecture and the Built Environment, Delft University of Technology, 2628 Delft, The Netherlands)

Abstract

“Desigrated” presented an attempt to integrate heat prevention strategies with low-ex cooling technologies, namely the desiccant and M-cycle evaporative cooling technology, in the form of a façade system for high-rise office buildings. The project targets to provide an alternative cooling solution for the hot and humid climate context of Bangkok. The results from experiments by various researchers are used as assumptions in developing the system, which was then evaluated through numerical methods and dynamic simulations. Being one of the prominent dehumidification technologies, a composite silica gel heat exchanger (CCHE) was implemented as the primary part of the façade system, while the M-cycle technology would also be implemented as a secondary cooling technique to cool down the supply air. The evaluation shows a promising result with up to 36% energy consumption reduction in comparison with the conventional cooling system, presenting itself as a transitioning tool in order to replace refrigerant cooling.

Suggested Citation

  • Natchai Suwannapruk & Alejandro Prieto & Christien Janssen, 2020. "“Desigrated”-Desiccant Integrated Façade for the Hot-Humid Climate of Bangkok, Thailand," Sustainability, MDPI, vol. 12(13), pages 1-28, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:13:p:5490-:d:381596
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/13/5490/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/13/5490/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Prieto, Alejandro & Knaack, Ulrich & Auer, Thomas & Klein, Tillmann, 2019. "COOLFACADE: State-of-the-art review and evaluation of solar cooling technologies on their potential for façade integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 395-414.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    2. Bataineh, Khaled, 2024. "Hybrid fuel-assisted solar-powered stirling engine for combined cooling, heating, and power systems: A review," Energy, Elsevier, vol. 300(C).
    3. Ahsan Waqar & Idris Othman & Nasir Shafiq & Hasim Altan & Bertug Ozarisoy, 2023. "Modeling the Effect of Overcoming the Barriers to Passive Design Implementation on Project Sustainability Building Success: A Structural Equation Modeling Perspective," Sustainability, MDPI, vol. 15(11), pages 1-26, June.
    4. Manuela Castañeda & Elkin I. Gutiérrez-Velásquez & Claudio E. Aguilar & Sergio Neves Monteiro & Andrés A. Amell & Henry A. Colorado, 2022. "Sustainability and Circular Economy Perspectives of Materials for Thermoelectric Modules," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    5. Yang, Yang & Chen, Sarula, 2022. "Thermal insulation solutions for opaque envelope of low-energy buildings: A systematic review of methods and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Shabir, Faizan & Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut B. & Askalany, Ahmed & Ali, Imran & Zhou, Yuguang & Ahmad, Riaz & Shamshiri, Redmond R., 2020. "Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2022. "A review on the integration and optimization of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    8. Yuanda Hong & Collins I. Ezeh & Wu Deng & Sung-Hugh Hong & Zhen Peng, 2019. "Building Energy Retrofit Measures in Hot-Summer–Cold-Winter Climates: A Case Study in Shanghai," Energies, MDPI, vol. 12(17), pages 1-32, September.
    9. Wang, Jiangjiang & Han, Zepeng & Guan, Zhimin, 2020. "Hybrid solar-assisted combined cooling, heating, and power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:13:p:5490-:d:381596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.