IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i17p3393-d263609.html
   My bibliography  Save this article

Building Energy Retrofit Measures in Hot-Summer–Cold-Winter Climates: A Case Study in Shanghai

Author

Listed:
  • Yuanda Hong

    (Department of Architecture and Built Environment, University of Nottingham Ningbo China, University Park, Ningbo 315100, China
    Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
    Shanghai Daren Construction Engineering Co. Ltd., Floor 1, Building 60, No. 1818, Lianhang Road, Minhang District, Shanghai 201112, China)

  • Collins I. Ezeh

    (Department of Chemical and Environmental Engineering, University of Nottingham Ningbo, University Park, Ningbo 315100, China
    Shanghai Daren Construction Engineering Co. Ltd., Floor 1, Building 60, No. 1818, Lianhang Road, Minhang District, Shanghai 201112, China)

  • Wu Deng

    (Department of Architecture and Built Environment, University of Nottingham Ningbo China, University Park, Ningbo 315100, China)

  • Sung-Hugh Hong

    (Department of Architecture and Built Environment, University of Nottingham Ningbo China, University Park, Ningbo 315100, China)

  • Zhen Peng

    (Department of Architecture and Built Environment, University of Nottingham Ningbo China, University Park, Ningbo 315100, China)

Abstract

Building retrofit measures provide a significant means of mitigating the effect of climate change on buildings by enhancing building energy performance at a beneficial cost-effectiveness. An insight into the applicable building retrofit measures within a climate zone will guide the optimisation framework to attaining sustainability in architecture and the built environment. This article presents a brief overview of recent studies on retrofit measures and its application on a variety of buildings in hot-summer–cold-winter climates, with emphasis on Shanghai. Findings show that the major retrofit measures include improvement in the building envelope, heating, ventilation and cooling (HVAC) and lighting, supported by photovoltaic (PV) systems, accordingly. Furthermore, the study identifies key elements and plausible challenges for the evaluation of building retrofit measures in this region. In this regard, financial barriers and lack of standards and regulatory support are the main challenges identified. These insights provide a systematic approach to guide building researchers, practitioners and decision-makers in the design and development of existing and new retrofit measures for the future of rapidly growing cities with a broad climate variation scope.

Suggested Citation

  • Yuanda Hong & Collins I. Ezeh & Wu Deng & Sung-Hugh Hong & Zhen Peng, 2019. "Building Energy Retrofit Measures in Hot-Summer–Cold-Winter Climates: A Case Study in Shanghai," Energies, MDPI, vol. 12(17), pages 1-32, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3393-:d:263609
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/17/3393/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/17/3393/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A.M. Fogheri, 2015. "Energy Efficiency in Public Buildings," Rivista economica del Mezzogiorno, Società editrice il Mulino, issue 3-4, pages 763-784.
    2. Homod, Raad Z. & Sahari, Khairul Salleh Mohamed & Almurib, Haider A.F., 2014. "Energy saving by integrated control of natural ventilation and HVAC systems using model guide for comparison," Renewable Energy, Elsevier, vol. 71(C), pages 639-650.
    3. Achtnicht, Martin & Madlener, Reinhard, 2014. "Factors influencing German house owners' preferences on energy retrofits," Energy Policy, Elsevier, vol. 68(C), pages 254-263.
    4. Yang, Tianren & Zhang, Xiaoling, 2016. "Benchmarking the building energy consumption and solar energy trade-offs of residential neighborhoods on Chongming Eco-Island, China," Applied Energy, Elsevier, vol. 180(C), pages 792-799.
    5. Zhong, Y. & Cai, W.G. & Wu, Y. & Ren, H., 2009. "Incentive mechanism design for the residential building energy efficiency improvement of heating zones in North China," Energy Policy, Elsevier, vol. 37(6), pages 2119-2123, June.
    6. Chen, Shiyi, 2015. "Environmental pollution emissions, regional productivity growth and ecological economic development in China," China Economic Review, Elsevier, vol. 35(C), pages 171-182.
    7. Harris, Jane & Anderson, Jane & Shafron, Walter, 2000. "Investment in energy efficiency: a survey of Australian firms," Energy Policy, Elsevier, vol. 28(12), pages 867-876, October.
    8. Wang, Qiang & Wu, Shi-dai & Zeng, Yue-e & Wu, Bo-wei, 2016. "Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1563-1579.
    9. Wan, Kevin K.W. & Li, Danny H.W. & Pan, Wenyan & Lam, Joseph C., 2012. "Impact of climate change on building energy use in different climate zones and mitigation and adaptation implications," Applied Energy, Elsevier, vol. 97(C), pages 274-282.
    10. Lin, Boqiang & Du, Zhili, 2015. "How China׳s urbanization impacts transport energy consumption in the face of income disparity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1693-1701.
    11. Wu, Jianghong & Liu, Chaopeng & Li, Hongqi & Ouyang, Dong & Cheng, Jianhong & Wang, Yuanxia & You, Shaofang, 2017. "Residential air-conditioner usage in China and efficiency standardization," Energy, Elsevier, vol. 119(C), pages 1036-1046.
    12. Liang, Xin & Yu, Tao & Hong, Jingke & Shen, Geoffrey Qiping, 2019. "Making incentive policies more effective: An agent-based model for energy-efficiency retrofit in China," Energy Policy, Elsevier, vol. 126(C), pages 177-189.
    13. Ji, Ying & Xu, Peng & Duan, Pengfei & Lu, Xing, 2016. "Estimating hourly cooling load in commercial buildings using a thermal network model and electricity submetering data," Applied Energy, Elsevier, vol. 169(C), pages 309-323.
    14. Fan, Meiting & Shao, Shuai & Yang, Lili, 2015. "Combining global Malmquist–Luenberger index and generalized method of moments to investigate industrial total factor CO2 emission performance: A case of Shanghai (China)," Energy Policy, Elsevier, vol. 79(C), pages 189-201.
    15. Prieto, Alejandro & Knaack, Ulrich & Auer, Thomas & Klein, Tillmann, 2019. "COOLFACADE: State-of-the-art review and evaluation of solar cooling technologies on their potential for façade integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 395-414.
    16. Yohanis, Yigzaw Goshu, 2012. "Domestic energy use and householders' energy behaviour," Energy Policy, Elsevier, vol. 41(C), pages 654-665.
    17. Panchabikesan, Karthik & Vellaisamy, Kumaresan & Ramalingam, Velraj, 2017. "Passive cooling potential in buildings under various climatic conditions in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1236-1252.
    18. Hou, Jing & Liu, Yisheng & Wu, Yong & Zhou, Nan & Feng, Wei, 2016. "Comparative study of commercial building energy-efficiency retrofit policies in four pilot cities in China," Energy Policy, Elsevier, vol. 88(C), pages 204-215.
    19. Chidiac, S.E. & Catania, E.J.C. & Morofsky, E. & Foo, S., 2011. "Effectiveness of single and multiple energy retrofit measures on the energy consumption of office buildings," Energy, Elsevier, vol. 36(8), pages 5037-5052.
    20. Webb, Amanda L., 2017. "Energy retrofits in historic and traditional buildings: A review of problems and methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 748-759.
    21. Yau, Y.H. & Hasbi, S., 2013. "A review of climate change impacts on commercial buildings and their technical services in the tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 430-441.
    22. Hong, Tianzhen & Li, Cheng & Yan, Da, 2015. "Updates to the China Design Standard for Energy Efficiency in public buildings," Energy Policy, Elsevier, vol. 87(C), pages 187-198.
    23. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
    24. Cai, W.G. & Wu, Y. & Zhong, Y. & Ren, H., 2009. "China building energy consumption: Situation, challenges and corresponding measures," Energy Policy, Elsevier, vol. 37(6), pages 2054-2059, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Filomena Pietrapertosa & Marco Tancredi & Michele Giordano & Carmelina Cosmi & Monica Salvia, 2020. "How to Prioritize Energy Efficiency Intervention in Municipal Public Buildings to Decrease CO 2 Emissions? A Case Study from Italy," IJERPH, MDPI, vol. 17(12), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Liang & Geoffrey Qiping Shen & Li Guo, 2019. "Optimizing Incentive Policy of Energy-Efficiency Retrofit in Public Buildings: A Principal-Agent Model," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    2. Krarti, Moncef & Dubey, Kankana & Howarth, Nicholas, 2017. "Evaluation of building energy efficiency investment options for the Kingdom of Saudi Arabia," Energy, Elsevier, vol. 134(C), pages 595-610.
    3. Bell, N.O. & Bilbao, J.I. & Kay, M. & Sproul, A.B., 2022. "Future climate scenarios and their impact on heating, ventilation and air-conditioning system design and performance for commercial buildings for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Yu, Jinghua & Ye, Hong & Xu, Xinhua & Huang, Junchao & Liu, Yunxi & Wang, Jinbo, 2018. "Experimental study on the thermal performance of a hollow block ventilation wall," Renewable Energy, Elsevier, vol. 122(C), pages 619-631.
    5. Lin, Boqiang & Zhu, Junpeng, 2019. "Impact of energy saving and emission reduction policy on urban sustainable development: Empirical evidence from China," Applied Energy, Elsevier, vol. 239(C), pages 12-22.
    6. Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
    7. Wang, Y. & Mauree, D. & Sun, Q. & Lin, H. & Scartezzini, J.L. & Wennersten, R., 2020. "A review of approaches to low-carbon transition of high-rise residential buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    8. Qi-Gan Shao & James J. H. Liou & Sung-Shun Weng & Yen-Ching Chuang, 2018. "Improving the Green Building Evaluation System in China Based on the DANP Method," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    9. Seyedmohammadreza Heibati & Wahid Maref & Hamed H. Saber, 2019. "Assessing the Energy and Indoor Air Quality Performance for a Three-Story Building Using an Integrated Model, Part One: The Need for Integration," Energies, MDPI, vol. 12(24), pages 1-18, December.
    10. Bai, Lujian & Wang, Shusheng, 2019. "Definition of new thermal climate zones for building energy efficiency response to the climate change during the past decades in China," Energy, Elsevier, vol. 170(C), pages 709-719.
    11. Liu, Jia & Chen, Xi & Yang, Hongxing & Li, Yutong, 2020. "Energy storage and management system design optimization for a photovoltaic integrated low-energy building," Energy, Elsevier, vol. 190(C).
    12. Shao, Shuai & Guo, Longfei & Yu, Mingliang & Yang, Lili & Guan, Dabo, 2019. "Does the rebound effect matter in energy import-dependent mega-cities? Evidence from Shanghai (China)," Applied Energy, Elsevier, vol. 241(C), pages 212-228.
    13. Yu, Jinghua & Leng, Kangxin & Ye, Hong & Xu, Xinhua & Luo, Yongqiang & Wang, Jinbo & Yang, Xie & Yang, Qingchen & Gang, Wenjie, 2020. "Study on thermal insulation characteristics and optimized design of pipe-embedded ventilation roof with outer-layer shape-stabilized PCM in different climate zones," Renewable Energy, Elsevier, vol. 147(P1), pages 1609-1622.
    14. Dong, Xiao-Ying & Hao, Yu, 2018. "Would income inequality affect electricity consumption? Evidence from China," Energy, Elsevier, vol. 142(C), pages 215-227.
    15. Yijun Fu & Shicong Zhang & Xi Chen & Wei Xu, 2021. "Sino-American Building Energy Standards Comparison and Recommendations towards Zero Energy Building," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    16. Muhammad Shahid Mastoi & Hafiz Mudassir Munir & Shenxian Zhuang & Mannan Hassan & Muhammad Usman & Ahmad Alahmadi & Basem Alamri, 2022. "A Comprehensive Analysis of the Power Demand–Supply Situation, Electricity Usage Patterns, and the Recent Development of Renewable Energy in China," Sustainability, MDPI, vol. 14(6), pages 1-34, March.
    17. Sayani Saha & Rahul B Hiremath & Sanjay Prasad & Bimlesh Kumar, 2021. "Barriers to Adoption of Commercial Green Buildings in India: A Review," Journal of Infrastructure Development, India Development Foundation, vol. 13(2), pages 107-128, December.
    18. Lin, Boqiang & Li, Zheng, 2020. "Is more use of electricity leading to less carbon emission growth? An analysis with a panel threshold model," Energy Policy, Elsevier, vol. 137(C).
    19. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    20. Sheng-Yuan Wang & Kyung-Tae Lee & Ju-Hyung Kim, 2022. "Green Retrofitting Simulation for Sustainable Commercial Buildings in China Using a Proposed Multi-Agent Evolutionary Game," Sustainability, MDPI, vol. 14(13), pages 1-32, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3393-:d:263609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.