IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i13p5283-d378445.html
   My bibliography  Save this article

A Newly Hybrid Method Based on Cuckoo Search and Sunflower Optimization for Optimal Power Flow Problem

Author

Listed:
  • Thanh Long Duong

    (Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam)

  • Ngoc Anh Nguyen

    (Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam)

  • Thuan Thanh Nguyen

    (Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam)

Abstract

The paper proposes a new hybrid method based on cuckoo search (CSA) and sunflower optimization (SFO) approach (called HCSA-SFO) for improving the performance of solutions in the optimization power system operation problem. In the power system, the optimal power flow (OPF) problem is one of the important factors which usually minimizes total cost and total active power losses while satisfying all constraints of the output power of generators, the voltage at buses, power flow on branches, the capacity of capacitor banks and steps of transformer taps. HCSA-SFO utilizes the mutation and selection mechanism in the SFO algorithm to replace the Lévy flights function in CSA. Hence, this makes HCSA-SFO avoid the fixed step size in the CSA from that can reduce run time and improve the quality of solution for the HCSA-SFO algorithm in the OPF problem. The proposed hybrid technique is simulated on the 30-buses and 118-buses systems. The obtained simulation results from the suggested technique are compared to many other approaches. The result comparisons in different cases showed that the suggested HCSA-SFO can achieve a better result than many other optimization approaches. Therefore, the suggested HCSA-SFO is also an effective approach for dealing with the OPF problem.

Suggested Citation

  • Thanh Long Duong & Ngoc Anh Nguyen & Thuan Thanh Nguyen, 2020. "A Newly Hybrid Method Based on Cuckoo Search and Sunflower Optimization for Optimal Power Flow Problem," Sustainability, MDPI, vol. 12(13), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:13:p:5283-:d:378445
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/13/5283/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/13/5283/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reddy, S. Surender & Abhyankar, A.R. & Bijwe, P.R., 2011. "Reactive power price clearing using multi-objective optimization," Energy, Elsevier, vol. 36(5), pages 3579-3589.
    2. Niknam, Taher & Narimani, Mohammad rasoul & Jabbari, Masoud & Malekpour, Ahmad Reza, 2011. "A modified shuffle frog leaping algorithm for multi-objective optimal power flow," Energy, Elsevier, vol. 36(11), pages 6420-6432.
    3. Warid Warid & Hashim Hizam & Norman Mariun & Noor Izzri Abdul-Wahab, 2016. "Optimal Power Flow Using the Jaya Algorithm," Energies, MDPI, vol. 9(9), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed H. Hassan & Salah Kamel & Ali Selim & Tahir Khurshaid & José Luis Domínguez-García, 2021. "A Modified Rao-2 Algorithm for Optimal Power Flow Incorporating Renewable Energy Sources," Mathematics, MDPI, vol. 9(13), pages 1-22, June.
    2. Yude Yang & Yuying Luo & Lizhen Yang, 2022. "Small-Signal Stability Constrained Optimal Power Flow Model Based on BP Neural Network Algorithm," Sustainability, MDPI, vol. 14(20), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "Single and Multi-Objective Optimal Power Flow Based on Hunger Games Search with Pareto Concept Optimization," Energies, MDPI, vol. 15(22), pages 1-31, November.
    2. Ali S. Alghamdi, 2022. "Optimal Power Flow in Wind–Photovoltaic Energy Regulation Systems Using a Modified Turbulent Water Flow-Based Optimization," Sustainability, MDPI, vol. 14(24), pages 1-27, December.
    3. Abdullah Khan & Hashim Hizam & Noor Izzri Abdul-Wahab & Mohammad Lutfi Othman, 2020. "Solution of Optimal Power Flow Using Non-Dominated Sorting Multi Objective Based Hybrid Firefly and Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 13(16), pages 1-24, August.
    4. Saket Gupta & Narendra Kumar & Laxmi Srivastava & Hasmat Malik & Amjad Anvari-Moghaddam & Fausto Pedro García Márquez, 2021. "A Robust Optimization Approach for Optimal Power Flow Solutions Using Rao Algorithms," Energies, MDPI, vol. 14(17), pages 1-28, September.
    5. Hao Su & Qun Niu & Zhile Yang, 2023. "Optimal Power Flow Using Improved Cross-Entropy Method," Energies, MDPI, vol. 16(14), pages 1-33, July.
    6. Pourakbari-Kasmaei, Mahdi & Rider, Marcos J. & Mantovani, José R.S., 2014. "An unequivocal normalization-based paradigm to solve dynamic economic and emission active-reactive OPF (optimal power flow)," Energy, Elsevier, vol. 73(C), pages 554-566.
    7. Gonggui Chen & Zhengmei Lu & Zhizhong Zhang, 2018. "Improved Krill Herd Algorithm with Novel Constraint Handling Method for Solving Optimal Power Flow Problems," Energies, MDPI, vol. 11(1), pages 1-27, January.
    8. Gonggui Chen & Xingting Yi & Zhizhong Zhang & Hangtian Lei, 2018. "Solving the Multi-Objective Optimal Power Flow Problem Using the Multi-Objective Firefly Algorithm with a Constraints-Prior Pareto-Domination Approach," Energies, MDPI, vol. 11(12), pages 1-18, December.
    9. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Roosta, Alireza & Amiri, Babak, 2012. "A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch," Energy, Elsevier, vol. 42(1), pages 530-545.
    10. Usama Khaled & Ali M. Eltamaly & Abderrahmane Beroual, 2017. "Optimal Power Flow Using Particle Swarm Optimization of Renewable Hybrid Distributed Generation," Energies, MDPI, vol. 10(7), pages 1-14, July.
    11. Mohammad Zohrul Islam & Noor Izzri Abdul Wahab & Veerapandiyan Veerasamy & Hashim Hizam & Nashiren Farzilah Mailah & Josep M. Guerrero & Mohamad Nasrun Mohd Nasir, 2020. "A Harris Hawks Optimization Based Single- and Multi-Objective Optimal Power Flow Considering Environmental Emission," Sustainability, MDPI, vol. 12(13), pages 1-25, June.
    12. Omaji Samuel & Nadeem Javaid & Mahmood Ashraf & Farruh Ishmanov & Muhammad Khalil Afzal & Zahoor Ali Khan, 2018. "Jaya based Optimization Method with High Dispatchable Distributed Generation for Residential Microgrid," Energies, MDPI, vol. 11(6), pages 1-29, June.
    13. Ahmed Al Ameri & Aouchenni Ounissa & Cristian Nichita & Aouzellag Djamal, 2017. "Power Loss Analysis for Wind Power Grid Integration Based on Weibull Distribution," Energies, MDPI, vol. 10(4), pages 1-16, April.
    14. Skolfield, J. Kyle & Escobedo, Adolfo R., 2022. "Operations research in optimal power flow: A guide to recent and emerging methodologies and applications," European Journal of Operational Research, Elsevier, vol. 300(2), pages 387-404.
    15. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation," Applied Energy, Elsevier, vol. 99(C), pages 455-470.
    16. Anurag Gautam & Ibraheem & Gulshan Sharma & Mohammad F. Ahmer & Narayanan Krishnan, 2023. "Methods and Methodologies for Congestion Alleviation in the DPS: A Comprehensive Review," Energies, MDPI, vol. 16(4), pages 1-28, February.
    17. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "Reserve constrained dynamic optimal power flow subject to valve-point effects, prohibited zones and multi-fuel constraints," Energy, Elsevier, vol. 47(1), pages 451-464.
    18. Pan, Jeng-Shyang & Hu, Pei & Chu, Shu-Chuan, 2021. "Binary fish migration optimization for solving unit commitment," Energy, Elsevier, vol. 226(C).
    19. Salkuti, Surender Reddy, 2019. "Day-ahead thermal and renewable power generation scheduling considering uncertainty," Renewable Energy, Elsevier, vol. 131(C), pages 956-965.
    20. Amr Khaled Khamees & Almoataz Y. Abdelaziz & Makram R. Eskaros & Mahmoud A. Attia & Mariam A. Sameh, 2022. "Optimal Power Flow with Stochastic Renewable Energy Using Three Mixture Component Distribution Functions," Sustainability, MDPI, vol. 15(1), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:13:p:5283-:d:378445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.