IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i12p5018-d373679.html
   My bibliography  Save this article

Analysis of Beijing’s Working Population Based on Geographically Weighted Regression Model

Author

Listed:
  • Yanyan Chen

    (Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China)

  • Hanqiang Qian

    (Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China)

  • Yang Wang

    (Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China)

Abstract

Evaluation of urban planning and development is becoming more and more important due to the large-scale urbanization of the world. With the application of mobile phone data, people can analyze the development status of cities from more perspectives. By using the mobile phone data of Beijing, the working population density in different regions was identified. Taking the working population density in Beijing as the research object and combining the land use of the city, the development status of Beijing was evaluated. A geographically weighted regression model (GWR) was used to analyze the difference in the impact of land use on the working population between different regions. By establishing a correlation model between the working population and land use, not only can the city’s development status be evaluated, but it can also help city managers and planners to make decisions to promote better development of Beijing.

Suggested Citation

  • Yanyan Chen & Hanqiang Qian & Yang Wang, 2020. "Analysis of Beijing’s Working Population Based on Geographically Weighted Regression Model," Sustainability, MDPI, vol. 12(12), pages 1-16, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:5018-:d:373679
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/12/5018/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/12/5018/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lucas, Karen & Philips, Ian & Mulley, Corinne & Ma, Liang, 2018. "Is transport poverty socially or environmentally driven? Comparing the travel behaviours of two low-income populations living in central and peripheral locations in the same city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 622-634.
    2. Meina Zheng & Feng Liu & Xiucheng Guo & Xinyue Lei, 2019. "Assessing the Distribution of Commuting Trips and Jobs-Housing Balance Using Smart Card Data: A Case Study of Nanjing, China," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    3. Fan Yang & Fan Ding & Xu Qu & Bin Ran, 2019. "Estimating Urban Shared-Bike Trips with Location-Based Social Networking Data," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
    4. Lingbo Liu & Zhenghong Peng & Hao Wu & Hongzan Jiao & Yang Yu & Jie Zhao, 2018. "Fast Identification of Urban Sprawl Based on K-Means Clustering with Population Density and Local Spatial Entropy," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    5. Xingyuan Xiao & Minyue Hu & Minghong Tan & Xiubin Li & Wei Li, 2018. "Changes in the Ecological Footprint of Rural Populations in the Taihang Mountains, China," Sustainability, MDPI, vol. 10(10), pages 1-13, October.
    6. A. Stewart Fotheringham & Martin Charlton & Chris Brunsdon, 1997. "Measuring Spatial Variations in Relationships with Geographically Weighted Regression," Advances in Spatial Science, in: Manfred M. Fischer & Arthur Getis (ed.), Recent Developments in Spatial Analysis, chapter 4, pages 60-82, Springer.
    7. Lingbo Liu & Zhenghong Peng & Hao Wu & Hongzan Jiao & Yang Yu, 2018. "Exploring Urban Spatial Feature with Dasymetric Mapping Based on Mobile Phone Data and LUR-2SFCAe Method," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    8. Yanyan Chen & Zheng Zhang & Tianwen Liang, 2019. "Assessing Urban Travel Patterns: An Analysis of Traffic Analysis Zone-Based Mobility Patterns," Sustainability, MDPI, vol. 11(19), pages 1-15, October.
    9. Xiang Zhou & Xiaohong Chen & Tianran Zhang, 2016. "Impact of Megacity Jobs-Housing Spatial Mismatch on Commuting Behaviors: A Case Study on Central Districts of Shanghai, China," Sustainability, MDPI, vol. 8(2), pages 1-22, January.
    10. Yingqi Guo & Shu-Sen Chang & Feng Sha & Paul S F Yip, 2018. "Poverty concentration in an affluent city: Geographic variation and correlates of neighborhood poverty rates in Hong Kong," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-17, February.
    11. Jinjun Tang & Fan Gao & Fang Liu & Wenhui Zhang & Yong Qi, 2019. "Understanding Spatio-Temporal Characteristics of Urban Travel Demand Based on the Combination of GWR and GLM," Sustainability, MDPI, vol. 11(19), pages 1-19, October.
    12. Shaojun Liu & Ling Zhang & Yi Long, 2019. "Urban Vitality Area Identification and Pattern Analysis from the Perspective of Time and Space Fusion," Sustainability, MDPI, vol. 11(15), pages 1-27, July.
    13. Yaxiong Ma & Sucharita Gopal, 2018. "Geographically Weighted Regression Models in Estimating Median Home Prices in Towns of Massachusetts Based on an Urban Sustainability Framework," Sustainability, MDPI, vol. 10(4), pages 1-27, March.
    14. Lingjun Tang & Yu Lin & Sijia Li & Sheng Li & Jingyi Li & Fu Ren & Chao Wu, 2018. "Exploring the Influence of Urban Form on Urban Vibrancy in Shenzhen Based on Mobile Phone Data," Sustainability, MDPI, vol. 10(12), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Zeng & Zongyao Sun & Yuqi Chen & Zhi Qiao & Liangwa Cai, 2021. "COVID-19: A Comparative Study of Population Aggregation Patterns in the Central Urban Area of Tianjin, China," IJERPH, MDPI, vol. 18(4), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaojun Liu & Yao Long & Ling Zhang & Hao Liu, 2021. "Quantifying and Characterizing Urban Leisure Activities by Merging Multiple Sensing Big Data: A Case Study of Nanjing, China," Land, MDPI, vol. 10(11), pages 1-20, November.
    2. Hongyu Gong & Xiaozihan Wang & Zihao Wang & Ziyi Liu & Qiushan Li & Yunhan Zhang, 2022. "How Did the Built Environment Affect Urban Vibrancy? A Big Data Approach to Post-Disaster Revitalization Assessment," IJERPH, MDPI, vol. 19(19), pages 1-25, September.
    3. Fan Yang & Fan Ding & Xu Qu & Bin Ran, 2019. "Estimating Urban Shared-Bike Trips with Location-Based Social Networking Data," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
    4. Dian Shao & Weiting Xiong, 2022. "Does High Spatial Density Imply High Population Density? Spatial Mechanism of Population Density Distribution Based on Population–Space Imbalance," Sustainability, MDPI, vol. 14(10), pages 1-22, May.
    5. Xindong He & Xianmin Mai & Guoqiang Shen, 2020. "Poverty and Physical Geographic Factors: An Empirical Analysis of Sichuan Province Using the GWR Model," Sustainability, MDPI, vol. 13(1), pages 1-17, December.
    6. Jing Wu & Xirui Chen & Shulin Chen, 2019. "Temporal Characteristics of Waterfronts in Wuhan City and People’s Behavioral Preferences Based on Social Media Data," Sustainability, MDPI, vol. 11(22), pages 1-37, November.
    7. Bohong Zheng & Rui Guo & Komi Bernard Bedra & Yanfen Xiang, 2022. "Quantitative Evaluation of Urban Style at Street Level: A Case Study of Hengyang County, China," Land, MDPI, vol. 11(4), pages 1-28, March.
    8. Wang, Xiaoxi & Zhang, Yaojun & Yu, Danlin & Qi, Jinghan & Li, Shujing, 2022. "Investigating the spatiotemporal pattern of urban vibrancy and its determinants: Spatial big data analyses in Beijing, China," Land Use Policy, Elsevier, vol. 119(C).
    9. KiJeon Nam & Pouya Ifaei & Sungku Heo & Gahee Rhee & Seungchul Lee & ChangKyoo Yoo, 2019. "An Efficient Burst Detection and Isolation Monitoring System for Water Distribution Networks Using Multivariate Statistical Techniques," Sustainability, MDPI, vol. 11(10), pages 1-17, May.
    10. Jin, Peizhen & Mangla, Sachin Kumar & Song, Malin, 2021. "Moving towards a sustainable and innovative city: Internal urban traffic accessibility and high-level innovation based on platform monitoring data," International Journal of Production Economics, Elsevier, vol. 235(C).
    11. Awaworyi Churchill, Sefa & Koomson, Isaac & Munyanyi, Musharavati Ephraim, 2023. "Transport poverty and obesity: The mediating roles of social capital and physical activity," Transport Policy, Elsevier, vol. 130(C), pages 155-166.
    12. Christian Martin Mützel & Joachim Scheiner, 2022. "Investigating spatio-temporal mobility patterns and changes in metro usage under the impact of COVID-19 using Taipei Metro smart card data," Public Transport, Springer, vol. 14(2), pages 343-366, June.
    13. Arezoo Mokhtari & Behnam Tashayo & Kaveh Deilami, 2021. "Implications of Nonstationary Effect on Geographically Weighted Total Least Squares Regression for PM 2.5 Estimation," IJERPH, MDPI, vol. 18(13), pages 1-17, July.
    14. LE GALLO, Julie, 2000. "Econométrie spatiale 2 -Hétérogénéité spatiale," LATEC - Document de travail - Economie (1991-2003) 2001-01, LATEC, Laboratoire d'Analyse et des Techniques EConomiques, CNRS UMR 5118, Université de Bourgogne.
    15. Jaewon Lim & Jae Hong Kim, 2019. "Joint Determination of Residential Relocation and Commuting: A Forecasting Experiment for Sustainable Land Use and Transportation Planning," Sustainability, MDPI, vol. 11(1), pages 1-24, January.
    16. Zheng, Zhong & Zhou, Suhong & Deng, Xingdong, 2021. "Exploring both home-based and work-based jobs-housing balance by distance decay effect," Journal of Transport Geography, Elsevier, vol. 93(C).
    17. Zolnik, Edmund, 2021. "Geographically weighted regression models of residential property transactions: Walkability and value uplift," Journal of Transport Geography, Elsevier, vol. 92(C).
    18. Hong Yi & Lu Wang & Qiao Li & Xiang Li, 2022. "Investigate Jobs–Housing Spatial Relationship with Individual-Based Mobility Big Data of Public Housing Tenants: A Case Study in Chongqing, China," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    19. Eunbee Gil & Yongjin Ahn & Youngsang Kwon, 2020. "Tourist Attraction and Points of Interest (POIs) Using Search Engine Data: Case of Seoul," Sustainability, MDPI, vol. 12(17), pages 1-21, August.
    20. Arturo Bujanda & Thomas M. Fullerton, 2017. "Impacts of transportation infrastructure on single-family property values," Applied Economics, Taylor & Francis Journals, vol. 49(51), pages 5183-5199, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:5018-:d:373679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.