IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i11p4601-d367365.html
   My bibliography  Save this article

Simulation of Human Activity Intensity and Its Influence on Mammal Diversity in Sanjiangyuan National Park, China

Author

Listed:
  • Changbai Xi

    (Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China)

  • Yao Chi

    (Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China)

  • Tianlu Qian

    (Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China)

  • Wenhan Zhang

    (Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China)

  • Jiechen Wang

    (Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
    Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China)

Abstract

The rapid pace of development in western China has brought about inevitable concerns for environmental conditions and their management. The Sanjiangyuan National Park strives to address concerns for sustainable water resources management and biodiversity management, especially for the protection of endangered flora and fauna. In this study, a machine learning model (MaxEnt) was used to predict the human activity intensity and its effects on species in Sanjiangyuan protected by the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). The model used human settlements as input and datasets such as terrain factors, climate, and artificial structures as environmental factors. The results showed that human activity intensity was significantly different between the East and the West. The area with the highest human activity intensity was Yushu County in the south area, and Xinghai-Zeku County in the east. By comparing the mammal richness with human activity intensity, we found human–wildlife coexistence in Sanjiangyuan. A detailed analysis on the CITES protected species showed that many important species, such as snow leopards, red pandas, and small Indian civets, occupied areas with high human activity intensity. The national park protects 3/4 CITES species with 1/3 in the area of the Sanjiangyuan region, owing to the relatively low human activity intensity.

Suggested Citation

  • Changbai Xi & Yao Chi & Tianlu Qian & Wenhan Zhang & Jiechen Wang, 2020. "Simulation of Human Activity Intensity and Its Influence on Mammal Diversity in Sanjiangyuan National Park, China," Sustainability, MDPI, vol. 12(11), pages 1-14, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4601-:d:367365
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/11/4601/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/11/4601/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. J. Scholes & R. Biggs, 2005. "A biodiversity intactness index," Nature, Nature, vol. 434(7029), pages 45-49, March.
    2. Michal Druga & Jozef Minár, 2018. "Exposure to human influence – a geographical field approximating intensity of human influence on landscape structure," Journal of Maps, Taylor & Francis Journals, vol. 14(2), pages 486-493, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roland Clift & Sarah Sim & Henry King & Jonathan L. Chenoweth & Ian Christie & Julie Clavreul & Carina Mueller & Leo Posthuma & Anne-Marie Boulay & Rebecca Chaplin-Kramer & Julia Chatterton & Fabrice , 2017. "The Challenges of Applying Planetary Boundaries as a Basis for Strategic Decision-Making in Companies with Global Supply Chains," Sustainability, MDPI, vol. 9(2), pages 1-23, February.
    2. Stephanie D. Maier & Jan Paul Lindner & Javier Francisco, 2019. "Conceptual Framework for Biodiversity Assessments in Global Value Chains," Sustainability, MDPI, vol. 11(7), pages 1-34, March.
    3. Ding, Helen & Nunes, Paulo A.L.D., 2014. "Modeling the links between biodiversity, ecosystem services and human wellbeing in the context of climate change: Results from an econometric analysis of the European forest ecosystems," Ecological Economics, Elsevier, vol. 97(C), pages 60-73.
    4. Lafuite, A.-S. & Loreau, M., 2017. "Time-delayed biodiversity feedbacks and the sustainability of social-ecological systems," Ecological Modelling, Elsevier, vol. 351(C), pages 96-108.
    5. Verboom, Jana & Alkemade, Rob & Klijn, Jan & Metzger, Marc J. & Reijnen, Rien, 2007. "Combining biodiversity modeling with political and economic development scenarios for 25 EU countries," Ecological Economics, Elsevier, vol. 62(2), pages 267-276, April.
    6. Halkos, George E., 2011. "Nonparametric modelling of biodiversity: Determinants of threatened species," Journal of Policy Modeling, Elsevier, vol. 33(4), pages 618-635, July.
    7. Melissa Anne Beryl Vogt, 2021. "Ecological sensitivity within human realities concept for improved functional biodiversity outcomes in agricultural systems and landscapes," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-19, December.
    8. Bjoern Soergel & Elmar Kriegler & Isabelle Weindl & Sebastian Rauner & Alois Dirnaichner & Constantin Ruhe & Matthias Hofmann & Nico Bauer & Christoph Bertram & Benjamin Leon Bodirsky & Marian Leimbac, 2021. "A sustainable development pathway for climate action within the UN 2030 Agenda," Nature Climate Change, Nature, vol. 11(8), pages 656-664, August.
    9. Haberl, Helmut & Gaube, Veronika & Díaz-Delgado, Ricardo & Krauze, Kinga & Neuner, Angelika & Peterseil, Johannes & Plutzar, Christoph & Singh, Simron J. & Vadineanu, Angheluta, 2009. "Towards an integrated model of socioeconomic biodiversity drivers, pressures and impacts. A feasibility study based on three European long-term socio-ecological research platforms," Ecological Economics, Elsevier, vol. 68(6), pages 1797-1812, April.
    10. R. Travis Belote, 2018. "Proposed Release of Wilderness Study Areas in Montana (USA) Would Demote the Conservation Status of Nationally-Valuable Wildlands," Land, MDPI, vol. 7(2), pages 1-10, June.
    11. Kocev, Dragi & Džeroski, Sašo & White, Matt D. & Newell, Graeme R. & Griffioen, Peter, 2009. "Using single- and multi-target regression trees and ensembles to model a compound index of vegetation condition," Ecological Modelling, Elsevier, vol. 220(8), pages 1159-1168.
    12. Halkos, George, 2010. "Modelling biodiversity," MPRA Paper 39075, University Library of Munich, Germany.
    13. Iker Etxano & Itziar Barinaga-Rementeria & Oihana Garcia, 2018. "Conflicting Values in Rural Planning: A Multifunctionality Approach through Social Multi-Criteria Evaluation," Sustainability, MDPI, vol. 10(5), pages 1-29, May.
    14. Vilém Pechanec & Ondřej Cudlín & Miloš Zapletal & Jan Purkyt & Lenka Štěrbová & Karel Chobot & Elvis Tangwa & Renata Včeláková & Marcela Prokopová & Pavel Cudlín, 2021. "Assessing Habitat Vulnerability and Loss of Naturalness: Applying the GLOBIO3 Model in the Czech Republic," Sustainability, MDPI, vol. 13(10), pages 1-18, May.
    15. Hanlie Malherbe & Stephan Pauleit & Carsten Lorz, 2019. "Mapping the Loss of Ecosystem Services in a Region Under Intensive Land Use Along the Southern Coast of South Africa," Land, MDPI, vol. 8(3), pages 1-18, March.
    16. Sagoff, Mark, 2018. "What Is Invasion Biology?," Ecological Economics, Elsevier, vol. 154(C), pages 22-30.
    17. Nicoletta Batini & Luigi Durand, 2024. "Accounting for Nature in Economic Models," Working Papers Central Bank of Chile 1014, Central Bank of Chile.
    18. Dardanoni, Valentino & Guerriero, Carla, 2021. "Young people' s willingness to pay for environmental protection," Ecological Economics, Elsevier, vol. 179(C).
    19. Selomane, Odirilwe & Reyers, Belinda & Biggs, Reinette & Tallis, Heather & Polasky, Stephen, 2015. "Towards integrated social–ecological sustainability indicators: Exploring the contribution and gaps in existing global data," Ecological Economics, Elsevier, vol. 118(C), pages 140-146.
    20. De Valck, Jeremy & Rolfe, John, 2019. "Comparing biodiversity valuation approaches for the sustainable management of the Great Barrier Reef, Australia," Ecosystem Services, Elsevier, vol. 35(C), pages 23-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4601-:d:367365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.