IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i11p4371-d363329.html
   My bibliography  Save this article

Joint Probabilistic Modeling of Wind Speed and Wind Direction for Wind Energy Analysis: A Case Study in Humansdorp and Noupoort

Author

Listed:
  • Mohammad Arashi

    (Department of Statistics, Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood 3619995161, Iran
    Department of Statistics, University of Pretoria, Pretoria 0002, South Africa)

  • Priyanka Nagar

    (Department of Statistics, University of Pretoria, Pretoria 0002, South Africa)

  • Andriette Bekker

    (Department of Statistics, University of Pretoria, Pretoria 0002, South Africa)

Abstract

South Africa has great potential for considering wind energy as an alternative resource. The climatology allows for significant wind energy production. An accurate joint description of the wind speed (linear) and wind direction (circular) characteristics is important for wind farm development. In this paper, a bivariate class of flexible joint probability density functions of wind speed and wind direction for the use in wind energy analysis is presented. This joint model accounts for bimodality, skewness, and a dependency structure between the wind speed and wind direction. For the joint probabilistic description of the wind speed and wind direction, special cases of this bivariate class are evaluated, namely the semi-parametric Möbius model on the disc, the Möbius distribution on the disc, and the Beta type III Möbius distribution on the disc. These three special cases are applied to wind speed and wind direction data recorded every ten minutes at two locations in South Africa. Evaluation of the models is based on three different information criteria and normalized deviation. Overall, the semi-parametric model is superior to the parametric models based on the performance measures. The wind energy potential at the two locations is evaluated using the semi-parametric model.

Suggested Citation

  • Mohammad Arashi & Priyanka Nagar & Andriette Bekker, 2020. "Joint Probabilistic Modeling of Wind Speed and Wind Direction for Wind Energy Analysis: A Case Study in Humansdorp and Noupoort," Sustainability, MDPI, vol. 12(11), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4371-:d:363329
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/11/4371/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/11/4371/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ju Feng & Wen Zhong Shen, 2015. "Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction," Energies, MDPI, vol. 8(4), pages 1-18, April.
    2. Zhang, Jie & Chowdhury, Souma & Messac, Achille & Castillo, Luciano, 2013. "A Multivariate and Multimodal Wind Distribution model," Renewable Energy, Elsevier, vol. 51(C), pages 436-447.
    3. Lidong Zhang & Qikai Li & Yuanjun Guo & Zhile Yang & Lei Zhang, 2018. "An Investigation of Wind Direction and Speed in a Featured Wind Farm Using Joint Probability Distribution Methods," Sustainability, MDPI, vol. 10(12), pages 1-15, November.
    4. Soukissian, Takvor H. & Karathanasi, Flora E., 2017. "On the selection of bivariate parametric models for wind data," Applied Energy, Elsevier, vol. 188(C), pages 280-304.
    5. Song, Mengxuan & Chen, Kai & Zhang, Xing & Wang, Jun, 2016. "Optimization of wind turbine micro-siting for reducing the sensitivity of power generation to wind direction," Renewable Energy, Elsevier, vol. 85(C), pages 57-65.
    6. Aman Ullah & Huansha Wang, 2013. "Parametric and Nonparametric Frequentist Model Selection and Model Averaging," Econometrics, MDPI, vol. 1(2), pages 1-23, September.
    7. Han, Qinkai & Hao, Zhuolin & Hu, Tao & Chu, Fulei, 2018. "Non-parametric models for joint probabilistic distributions of wind speed and direction data," Renewable Energy, Elsevier, vol. 126(C), pages 1032-1042.
    8. Saidur, R. & Rahim, N.A. & Islam, M.R. & Solangi, K.H., 2011. "Environmental impact of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2423-2430, June.
    9. Gerda Claeskens & Raymond J. Carroll, 2007. "An asymptotic theory for model selection inference in general semiparametric problems," Biometrika, Biometrika Trust, vol. 94(2), pages 249-265.
    10. Fernando Porté-Agel & Yu-Ting Wu & Chang-Hung Chen, 2013. "A Numerical Study of the Effects of Wind Direction on Turbine Wakes and Power Losses in a Large Wind Farm," Energies, MDPI, vol. 6(10), pages 1-17, October.
    11. Gugliani, G.K. & Sarkar, A. & Ley, C. & Mandal, S., 2018. "New methods to assess wind resources in terms of wind speed, load, power and direction," Renewable Energy, Elsevier, vol. 129(PA), pages 168-182.
    12. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    13. Davide Buttarazzi & Giuseppe Pandolfo & Giovanni C. Porzio, 2018. "A boxplot for circular data," Biometrics, The International Biometric Society, vol. 74(4), pages 1492-1501, December.
    14. José F. Herbert-Acero & Oliver Probst & Pierre-Elouan Réthoré & Gunner Chr. Larsen & Krystel K. Castillo-Villar, 2014. "A Review of Methodological Approaches for the Design and Optimization of Wind Farms," Energies, MDPI, vol. 7(11), pages 1-87, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soukissian, Takvor H. & Karathanasi, Flora E., 2017. "On the selection of bivariate parametric models for wind data," Applied Energy, Elsevier, vol. 188(C), pages 280-304.
    2. Han, Qinkai & Chu, Fulei, 2021. "Directional wind energy assessment of China based on nonparametric copula models," Renewable Energy, Elsevier, vol. 164(C), pages 1334-1349.
    3. Jung, Christopher & Schindler, Dirk, 2019. "Wind speed distribution selection – A review of recent development and progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    4. Ju Feng & Wen Zhong Shen, 2015. "Modelling Wind for Wind Farm Layout Optimization Using Joint Distribution of Wind Speed and Wind Direction," Energies, MDPI, vol. 8(4), pages 1-18, April.
    5. Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Nonparametric copula modeling of wind speed-wind shear for the assessment of height-dependent wind energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2018. "Realistic Wind Farm Layout Optimization through Genetic Algorithms Using a Gaussian Wake Model," Energies, MDPI, vol. 11(12), pages 1-26, November.
    7. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2021. "Wind Farm Area Shape Optimization Using Newly Developed Multi-Objective Evolutionary Algorithms," Energies, MDPI, vol. 14(14), pages 1-25, July.
    8. Han, Qinkai & Hao, Zhuolin & Hu, Tao & Chu, Fulei, 2018. "Non-parametric models for joint probabilistic distributions of wind speed and direction data," Renewable Energy, Elsevier, vol. 126(C), pages 1032-1042.
    9. Lepore, Antonio & Palumbo, Biagio & Pievatolo, Antonio, 2020. "A Bayesian approach for site-specific wind rose prediction," Renewable Energy, Elsevier, vol. 150(C), pages 691-702.
    10. Souma Chowdhury & Ali Mehmani & Jie Zhang & Achille Messac, 2016. "Market Suitability and Performance Tradeoffs Offered by Commercial Wind Turbines across Differing Wind Regimes," Energies, MDPI, vol. 9(5), pages 1-31, May.
    11. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    12. Chowdhury, Souma & Zhang, Jie & Messac, Achille & Castillo, Luciano, 2013. "Optimizing the arrangement and the selection of turbines for wind farms subject to varying wind conditions," Renewable Energy, Elsevier, vol. 52(C), pages 273-282.
    13. Feng, Ju & Shen, Wen Zhong, 2017. "Design optimization of offshore wind farms with multiple types of wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 1283-1297.
    14. Guedes, Kevin S. & de Andrade, Carla F. & Rocha, Paulo A.C. & Mangueira, Rivanilso dos S. & de Moura, Elineudo P., 2020. "Performance analysis of metaheuristic optimization algorithms in estimating the parameters of several wind speed distributions," Applied Energy, Elsevier, vol. 268(C).
    15. Silvio Rodrigues & Carlos Restrepo & George Katsouris & Rodrigo Teixeira Pinto & Maryam Soleimanzadeh & Peter Bosman & Pavol Bauer, 2016. "A Multi-Objective Optimization Framework for Offshore Wind Farm Layouts and Electric Infrastructures," Energies, MDPI, vol. 9(3), pages 1-42, March.
    16. Angel G. Gonzalez-Rodriguez & Javier Serrano-González & Manuel Burgos-Payán & Jesús Manuel Riquelme-Santos, 2021. "Realistic Optimization of Parallelogram-Shaped Offshore Wind Farms Considering Continuously Distributed Wind Resources," Energies, MDPI, vol. 14(10), pages 1-20, May.
    17. Soukissian, Takvor, 2013. "Use of multi-parameter distributions for offshore wind speed modeling: The Johnson SB distribution," Applied Energy, Elsevier, vol. 111(C), pages 982-1000.
    18. Parada, Leandro & Herrera, Carlos & Flores, Paulo & Parada, Victor, 2018. "Assessing the energy benefit of using a wind turbine micro-siting model," Renewable Energy, Elsevier, vol. 118(C), pages 591-601.
    19. Liao, Hao & Hu, Weihao & Wu, Xiawei & Wang, Ni & Liu, Zhou & Huang, Qi & Chen, Cong & Chen, Zhe, 2020. "Active power dispatch optimization for offshore wind farms considering fatigue distribution," Renewable Energy, Elsevier, vol. 151(C), pages 1173-1185.
    20. Alrashidi, Musaed & Rahman, Saifur & Pipattanasomporn, Manisa, 2020. "Metaheuristic optimization algorithms to estimate statistical distribution parameters for characterizing wind speeds," Renewable Energy, Elsevier, vol. 149(C), pages 664-681.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4371-:d:363329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.