IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i10p4264-d361675.html
   My bibliography  Save this article

Energy Management-Based Predictive Controller for a Smart Building Powered by Renewable Energy

Author

Listed:
  • Younès Dagdougui

    (Laboratory of Condensed Matter and Interdisciplinary Sciences, Faculty of Sciences, Mohammed V University in Rabat, 1014 RB Rabat, Morocco)

  • Ahmed Ouammi

    (Centre for Sustainable Development, Qatar University, Doha 2713, Qatar)

  • Rachid Benchrifa

    (Laboratory of Condensed Matter and Interdisciplinary Sciences, Faculty of Sciences, Mohammed V University in Rabat, 1014 RB Rabat, Morocco)

Abstract

This paper presents a smart building energy management system (BEMS), which is in charge of optimally controlling the sustainable operation of a building-integrated-microgrid (BIM). The main objective is to develop an advanced high-level centralized control approach-based model predictive control (MPC) considering variations of renewable sources and loads. A finite-horizon planning optimization problem is developed to control the operation of the BIM. The model can be implemented as a BEMS for the BIM to manipulate the indoor temperature and optimize the operation of the system’s units. A centralized MPC-based algorithm is implemented for the power management scheduling of all sub-systems as well as power exchanges with the electrical grid. The MPC algorithm is verified over case studies applied to two floors residential building considering the climate condition of a typical day of March, where the effects of both loads and thermal resistance of building shell on the operation of the BIM are analyzed via numerical simulations. The analysis shows that 96% of the total electrical load has been fulfilled by the local production where 23% represents the total electric output of the micro-CHP and 73% is the renewable energy production. The deficit, which represents only 4%, is purchased from the electrical distribution network (EDN).

Suggested Citation

  • Younès Dagdougui & Ahmed Ouammi & Rachid Benchrifa, 2020. "Energy Management-Based Predictive Controller for a Smart Building Powered by Renewable Energy," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4264-:d:361675
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/10/4264/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/10/4264/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carli, Raffaele & Dotoli, Mariagrazia & Jantzen, Jan & Kristensen, Michael & Ben Othman, Sarah, 2020. "Energy scheduling of a smart microgrid with shared photovoltaic panels and storage: The case of the Ballen marina in Samsø," Energy, Elsevier, vol. 198(C).
    2. Lei Zhang & Zhenwei Chu & Qing He & Peipei Zhai, 2019. "Investigating the Constraints to Buidling Information Modeling (BIM) Applications for Sustainable Building Projects: A Case of China," Sustainability, MDPI, vol. 11(7), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trinadh Pamulapati & Muhammed Cavus & Ishioma Odigwe & Adib Allahham & Sara Walker & Damian Giaouris, 2022. "A Review of Microgrid Energy Management Strategies from the Energy Trilemma Perspective," Energies, MDPI, vol. 16(1), pages 1-34, December.
    2. Isaías Gomes & Karol Bot & Maria Graça Ruano & António Ruano, 2022. "Recent Techniques Used in Home Energy Management Systems: A Review," Energies, MDPI, vol. 15(8), pages 1-41, April.
    3. Taewook Kang, 2020. "BIM-Based Human Machine Interface (HMI) Framework for Energy Management," Sustainability, MDPI, vol. 12(21), pages 1-17, October.
    4. Abbas Rabiee & Ali Abdali & Seyed Masoud Mohseni-Bonab & Mohsen Hazrati, 2021. "Risk-Averse Scheduling of Combined Heat and Power-Based Microgrids in Presence of Uncertain Distributed Energy Resources," Sustainability, MDPI, vol. 13(13), pages 1-24, June.
    5. Jaewan Joe & Piljae Im & Jin Dong, 2020. "Empirical Modeling of Direct Expansion (DX) Cooling System for Multiple Research Use Cases," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    6. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Danielle Pinette & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Industrialization and Thermal Performance of a New Unitized Water Flow Glazing Facade," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    7. Hang Liu & Yongcheng Wang & Shilin Nie & Yi Wang & Yu Chen, 2022. "Multistage Economic Scheduling Model of Micro-Energy Grids Considering Flexible Capacity Allocation," Sustainability, MDPI, vol. 14(15), pages 1-29, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    2. Felix Garcia-Torres & Ascension Zafra-Cabeza & Carlos Silva & Stephane Grieu & Tejaswinee Darure & Ana Estanqueiro, 2021. "Model Predictive Control for Microgrid Functionalities: Review and Future Challenges," Energies, MDPI, vol. 14(5), pages 1-26, February.
    3. Zhu, Jianquan & Xia, Yunrui & Mo, Xiemin & Guo, Ye & Chen, Jiajun, 2021. "A bilevel bidding and clearing model incorporated with a pricing strategy for the trading of energy storage use rights," Energy, Elsevier, vol. 235(C).
    4. Zezhou Wu & Changhong Chen & Yuzhu Cai & Chen Lu & Hao Wang & Tao Yu, 2019. "BIM-Based Visualization Research in the Construction Industry: A Network Analysis," IJERPH, MDPI, vol. 16(18), pages 1-13, September.
    5. Yongliang Deng & Jinyun Li & Qiuting Wu & Shuangshuang Pei & Na Xu & Guodong Ni, 2020. "Using Network Theory to Explore BIM Application Barriers for BIM Sustainable Development in China," Sustainability, MDPI, vol. 12(8), pages 1-22, April.
    6. Shuvo Dip Datta & Bassam A. Tayeh & Ibrahim Y. Hakeem & Yazan I. Abu Aisheh, 2023. "Benefits and Barriers of Implementing Building Information Modeling Techniques for Sustainable Practices in the Construction Industry—A Comprehensive Review," Sustainability, MDPI, vol. 15(16), pages 1-28, August.
    7. Kenan Hatipoglu & Mohammed Olama & Yaosuo Xue, 2020. "Model-Free Dynamic Voltage Control of Distributed Energy Resource (DER)-Based Microgrids," Energies, MDPI, vol. 13(15), pages 1-17, July.
    8. Jan Růžička & Jakub Veselka & Zdeněk Rudovský & Stanislav Vitásek & Petr Hájek, 2022. "BIM and Automation in Complex Building Assessment," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    9. Yu Cao & Liyan Huang & Nur Mardhiyah Aziz & Syahrul Nizam Kamaruzzaman, 2022. "Building Information Modelling (BIM) Capabilities in the Design and Planning of Rural Settlements in China: A Systematic Review," Land, MDPI, vol. 11(10), pages 1-34, October.
    10. Nikolaos Kolokas & Dimosthenis Ioannidis & Dimitrios Tzovaras, 2021. "Multi-Step Energy Demand and Generation Forecasting with Confidence Used for Specification-Free Aggregate Demand Optimization," Energies, MDPI, vol. 14(11), pages 1-36, May.
    11. Li, Xiaozhu & Chen, Laijun & Sun, Fan & Hao, Yibo & Du, Xili & Mei, Shenwei, 2023. "Share or not share, the analysis of energy storage interaction of multiple renewable energy stations based on the evolution game," Renewable Energy, Elsevier, vol. 208(C), pages 679-692.
    12. Xiong, Chang & Su, Yixin & Wang, Hao & Dong, Zhengcheng & Tian, Meng & Shi, Binghua, 2024. "Consensus-based decentralized scheduling method for collaborative operation in seaport virtual power plant," Applied Energy, Elsevier, vol. 373(C).
    13. Changsheng Liu & Xingxing Zhang, 2022. "Lithium-ion battery capacity configuration strategy for photovoltaic microgrid [DMPPT control of photovoltaic microgrid based on improved sparrow search algorithm]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 850-855.
    14. Wei, Congying & Wu, Qiuwei & Xu, Jian & Sun, Yuanzhang & Jin, Xiaolong & Liao, Siyang & Yuan, Zhiyong & Yu, Li, 2020. "Distributed scheduling of smart buildings to smooth power fluctuations considering load rebound," Applied Energy, Elsevier, vol. 276(C).
    15. Walker, Awnalisa & Kwon, Soongeol, 2021. "Design of structured control policy for shared energy storage in residential community: A stochastic optimization approach," Applied Energy, Elsevier, vol. 298(C).
    16. Mbungu, Nsilulu T. & Bansal, Ramesh C. & Naidoo, Raj M. & Bettayeb, Maamar & Siti, Mukwanga W. & Bipath, Minnesh, 2020. "A dynamic energy management system using smart metering," Applied Energy, Elsevier, vol. 280(C).
    17. Karol Bot & Laura Aelenei & Maria da Glória Gomes & Carlos Santos Silva, 2020. "Performance Assessment of a Building Integrated Photovoltaic Thermal System in Mediterranean Climate—A Numerical Simulation Approach," Energies, MDPI, vol. 13(11), pages 1-25, June.
    18. Yin, Linfei & Luo, Shikui & Ma, Chenxiao, 2021. "Expandable depth and width adaptive dynamic programming for economic smart generation control of smart grids," Energy, Elsevier, vol. 232(C).
    19. Helena Martín & Jordi de la Hoz & Arnau Aliana & Sergio Coronas & José Matas, 2021. "Analysis of the Net Metering Schemes for PV Self-Consumption in Denmark," Energies, MDPI, vol. 14(7), pages 1-22, April.
    20. Ahsan Waqar & Abdul Hannan Qureshi & Wesam Salah Alaloul, 2023. "Barriers to Building Information Modeling (BIM) Deployment in Small Construction Projects: Malaysian Construction Industry," Sustainability, MDPI, vol. 15(3), pages 1-30, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4264-:d:361675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.