IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i10p3955-d356958.html
   My bibliography  Save this article

High-Tech Urban Agriculture in Amsterdam: An Actor Network Analysis

Author

Listed:
  • Mohsen H. Farhangi

    (Department of Thematic Studies—Division of Technology and Social Change, Linköping University, SE-581 83 Linköping, Sweden)

  • Margherita E. Turvani

    (Department of Architecture and Arts, University IUAV of Venice, 30135 Venice, Italy)

  • Arnold van der Valk

    (Landscape Architecture and Spatial Planning Group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands)

  • Gerrit J. Carsjens

    (Landscape Architecture and Spatial Planning Group, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands)

Abstract

The agriculture and horticulture sector in the Netherlands is one of the most productive in the world. Although the sector is one of the most advanced and intense agricultural production systems worldwide, it faces challenges, such as climate change and environmental and social unsustainability of industrial production. To overcome these challenges, alternative food production initiatives have emerged, especially in large cities such as Amsterdam. Some initiatives involve producing food in the urban environment, supported by new technologies and practices, so-called high-tech urban agriculture (HTUA). These initiatives make cultivation of plants inside and on top of buildings possible and increase green spaces in urban areas. The emerging agricultural technologies are creating new business environments that are shape d by technology developers (e.g., suppliers of horticultural light emitting diodes (LED) and control environment systems) and developers of alternative food production practices (e.g., HTUA start-ups). However, research shows that the uptake of these technological innovations in urban planning processes is problematic. Therefore, this research analyzes the barriers that local government planners and HTUA developers are facing in the embedding of HTUA in urban planning processes, using the city of Amsterdam as a case study. This study draws on actor-network theory (ANT) to analyze the interactions between planners, technologies, technology developers and developers of alternative food production practices. Several concepts of ANT are integrated into a multi-level perspective on sustainability transitions (MLP) to create a new theoretical framework that can explain how interactions between technologies and planning actors transform the incumbent social–technical regime. The configuration of interactions between social and material entities in technology development and adoption processes in Amsterdam is analyzed through the lens of this theoretical framework. The data in this study were gathered by tracing actors and their connections by using ethnographic research methods. In the course of the integration of new technologies into urban planning practices, gaps between technologies, technology developers, and planning actors have been identified. The results of this study show a lacking connection between planning actors and technology developers, although planning actors do interact with developers of alternative food production practices. These interactions are influenced by agency of artefacts such as visualizations of the future projects. The paper concludes that for the utilization of emerging technologies for sustainability transition of cities, the existing gap between technology developers and planning actors needs to be bridged through the integration of technology development visions in urban agendas and planning processes.

Suggested Citation

  • Mohsen H. Farhangi & Margherita E. Turvani & Arnold van der Valk & Gerrit J. Carsjens, 2020. "High-Tech Urban Agriculture in Amsterdam: An Actor Network Analysis," Sustainability, MDPI, vol. 12(10), pages 1-35, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:3955-:d:356958
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/10/3955/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/10/3955/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johan Schot & Laur Kanger & Geert Verbong, 2016. "The roles of users in shaping transitions to new energy systems," Nature Energy, Nature, vol. 1(5), pages 1-7, May.
    2. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    3. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    4. Mohsen Hosseinifarhangi & Margherita E. Turvani & Arnold van der Valk & Gerrit J. Carsjens, 2019. "Technology-Driven Transition in Urban Food Production Practices: A Case Study of Shanghai," Sustainability, MDPI, vol. 11(21), pages 1-31, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bikram Pratim Bhuyan & Ravi Tomar & Amar Ramdane Cherif, 2022. "A Systematic Review of Knowledge Representation Techniques in Smart Agriculture (Urban)," Sustainability, MDPI, vol. 14(22), pages 1-36, November.
    2. Mohsen Farhangi & Sara Farhangi & Paulien C. H. van de Vlasakker & Gerrit J. Carsjens, 2021. "The Role of Urban Agriculture Technologies in Transformation toward Participatory Local Urban Planning in Rafsanjan," Land, MDPI, vol. 10(8), pages 1-30, August.
    3. Derk Jan Stobbelaar & Wim van der Knaap & Joop Spijker, 2022. "Transformation towards Green Cities: Key Conditions to Accelerate Change," Sustainability, MDPI, vol. 14(11), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weigelt, Carmen & Lu, Shaohua & Verhaal, J. Cameron, 2021. "Blinded by the sun: The role of prosumers as niche actors in incumbent firms’ adoption of solar power during sustainability transitions," Research Policy, Elsevier, vol. 50(9).
    2. Dierk Bauknecht & Allan Dahl Andersen & Karoline Dunne, 2020. "Challenges for electricity network governance in Energy transitions: Insights from Norway," Working Papers on Innovation Studies 20200115, Centre for Technology, Innovation and Culture, University of Oslo.
    3. Mohsen Farhangi & Sara Farhangi & Paulien C. H. van de Vlasakker & Gerrit J. Carsjens, 2021. "The Role of Urban Agriculture Technologies in Transformation toward Participatory Local Urban Planning in Rafsanjan," Land, MDPI, vol. 10(8), pages 1-30, August.
    4. Sam Wilkinson & Michele John & Gregory M. Morrison, 2021. "Rooftop PV and the Renewable Energy Transition; a Review of Driving Forces and Analytical Frameworks," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    5. Roberts, Cameron & Geels, Frank W., 2019. "Conditions for politically accelerated transitions: Historical institutionalism, the multi-level perspective, and two historical case studies in transport and agriculture," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 221-240.
    6. Pekkarinen, Satu & Melkas, Helinä, 2019. "Welfare state transition in the making: Focus on the niche-regime interaction in Finnish elderly care services," Technological Forecasting and Social Change, Elsevier, vol. 145(C), pages 240-253.
    7. Koirala, Binod Prasad & van Oost, Ellen & van der Windt, Henny, 2018. "Community energy storage: A responsible innovation towards a sustainable energy system?," Applied Energy, Elsevier, vol. 231(C), pages 570-585.
    8. Testa, Stefania & Nielsen, Kristian Roed & Bogers, Marcel & Cincotti, Silvano, 2019. "The role of crowdfunding in moving towards a sustainable society," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 66-73.
    9. Jenkins, Kirsten & Sovacool, Benjamin K. & McCauley, Darren, 2018. "Humanizing sociotechnical transitions through energy justice: An ethical framework for global transformative change," Energy Policy, Elsevier, vol. 117(C), pages 66-74.
    10. Auke Hoekstra & Maarten Steinbuch & Geert Verbong, 2017. "Creating Agent-Based Energy Transition Management Models That Can Uncover Profitable Pathways to Climate Change Mitigation," Complexity, Hindawi, vol. 2017, pages 1-23, December.
    11. Turnheim, Bruno & Nykvist, Björn, 2019. "Opening up the feasibility of sustainability transitions pathways (STPs): Representations, potentials, and conditions," Research Policy, Elsevier, vol. 48(3), pages 775-788.
    12. Cheng Wang & Tao Lv & Rongjiang Cai & Jianfeng Xu & Liya Wang, 2022. "Bibliometric Analysis of Multi-Level Perspective on Sustainability Transition Research," Sustainability, MDPI, vol. 14(7), pages 1-31, March.
    13. Xifeng Wu & Sijia Zhao & Yue Shen & Hatef Madani & Yu Chen, 2020. "A Combined Multi-Level Perspective and Agent-Based Modeling in Low-Carbon Transition Analysis," Energies, MDPI, vol. 13(19), pages 1-21, September.
    14. Hirt, Léon F. & Sahakian, Marlyne & Trutnevyte, Evelina, 2022. "What subnational imaginaries for solar PV? The case of the Swiss energy transition," Technology in Society, Elsevier, vol. 71(C).
    15. Wiegand, Julia, 2017. "Dezentrale Stromerzeugung als Chance zur Stärkung der Energie-Resilienz: Eine qualitative Analyse kommunaler Strategien im Raum Unna," Wuppertaler Studienarbeiten zur nachhaltigen Entwicklung, Wuppertal Institute for Climate, Environment and Energy, volume 11, number 11.
    16. Capellán-Pérez, Iñigo & Campos-Celador, Álvaro & Terés-Zubiaga, Jon, 2018. "Renewable Energy Cooperatives as an instrument towards the energy transition in Spain," Energy Policy, Elsevier, vol. 123(C), pages 215-229.
    17. Funcke, Simon & Bauknecht, Dierk, 2016. "Typology of centralised and decentralised visions for electricity infrastructure," Utilities Policy, Elsevier, vol. 40(C), pages 67-74.
    18. Bessi, Alessandro & Guidolin, Mariangela & Manfredi, Piero, 2021. "The role of gas on future perspectives of renewable energy diffusion: Bridging technology or lock-in?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    19. Eleftheria Vasileiadou & Boukje Huijben & Rob Raven, 2014. "Crowdfunding niches? Exploring the potential of crowdfunding for financing renewable energy niches in the Netherlands," Working Papers 14-11, Eindhoven Center for Innovation Studies, revised Nov 2014.
    20. Pradeep Racherla & Munir Mandviwalla, 2013. "Moving from Access to Use of the Information Infrastructure: A Multilevel Sociotechnical Framework," Information Systems Research, INFORMS, vol. 24(3), pages 709-730, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:3955-:d:356958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.