IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2019i1p309-d303548.html
   My bibliography  Save this article

Assessment of Urban Heat Risk in Mountain Environments: A Case Study of Chongqing Metropolitan Area, China

Author

Listed:
  • Dechao Chen

    (National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China)

  • Xinliang Xu

    (State Key Laboratory of Resources and Environmental Information Systems, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Zongyao Sun

    (School of Architecture, Tianjin University, Tianjin 300272, China)

  • Luo Liu

    (Guangdong Province Key Laboratory for Land Use and Consolidation, The College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China)

  • Zhi Qiao

    (School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China)

  • Tai Huang

    (Department of Tourism Management, Soochow University, Suzhou 215123, China)

Abstract

For urban climatic environments, the urban heat island (UHI) effect resulting from land use and land cover change (LUCC) caused by human activities is rapidly becoming one of the most notable characteristics of urban climate change due to urban expansion. UHI effects have become a significant barrier to the process of urbanization and sustainable development of the urban ecological environment. Predicting the spatial and temporal patterns of the urban heat environment from the spatial relationship between land use and land surface temperature (LST) is key to predicting urban heat environment risk. This study established an Urban Heat Environment Risk Model (UHERM) as follows. First, the urban LST was normalized and classified during three different periods. Second, a Markov model was constructed based on spatio-temporal change in the urban heat environment between the initial year (2005) and middle year (2010), and then a cellular automata (CA) model was used to reveal spatial relationships between the urban heat environments of the two periods and land use in the initial year. The spatio-temporal pattern in a future year (2015) was predicted and the accuracy of the simulation was verified. Finally, the spatio-temporal pattern of urban heat environment risk was quantitatively forecasted based on the decision rule for the urban heat environment risk considering both the present and future status of the spatial characteristics of the urban heat environment. The MODIS LST product and LUCC dataset retrieved from remote sensing images were used to verify the accuracy of UHERM and to forecast the spatio-temporal pattern of urban heat environment risk during the period of 2015–2020. The results showed that the risk of urban heat environment is increasing in the Chongqing metropolitan area. This method for quantitatively evaluating the spatio-temporal pattern of urban heat environment risk could guide sustainable growth and provide effective theoretical and technical support for the regulation of urban spatial structure to minimize urban heat environment risk.

Suggested Citation

  • Dechao Chen & Xinliang Xu & Zongyao Sun & Luo Liu & Zhi Qiao & Tai Huang, 2019. "Assessment of Urban Heat Risk in Mountain Environments: A Case Study of Chongqing Metropolitan Area, China," Sustainability, MDPI, vol. 12(1), pages 1-15, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:309-:d:303548
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/1/309/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/1/309/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bakhtiar Feizizadeh & Stefan Kienberger, 2017. "Spatially explicit sensitivity and uncertainty analysis for multicriteria-based vulnerability assessment," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 60(11), pages 2013-2035, November.
    2. David M. Lapola & Diego R. Braga & Gabriela M. Di Giulio & Roger R. Torres & Maria P. Vasconcellos, 2019. "Heat stress vulnerability and risk at the (super) local scale in six Brazilian capitals," Climatic Change, Springer, vol. 154(3), pages 477-492, June.
    3. Chunxia Liu & Yuechen Li, 2018. "Spatio-Temporal Features of Urban Heat Island and Its Relationship with Land Use/Cover in Mountainous City: A Case Study in Chongqing," Sustainability, MDPI, vol. 10(6), pages 1-15, June.
    4. French, Joshua & Kokoszka, Piotr & Stoev, Stilian & Hall, Lauren, 2019. "Quantifying the risk of heat waves using extreme value theory and spatio-temporal functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 176-193.
    5. Guodong Xu & Peng Guo & Xuemei Li & Yingying Jia, 2015. "Seasonal forecasting of 2014 summer heat wave over Beijing using GRAAP and other statistical methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1909-1925, January.
    6. Marando, Federica & Salvatori, Elisabetta & Sebastiani, Alessandro & Fusaro, Lina & Manes, Fausto, 2019. "Regulating Ecosystem Services and Green Infrastructure: assessment of Urban Heat Island effect mitigation in the municipality of Rome, Italy," Ecological Modelling, Elsevier, vol. 392(C), pages 92-102.
    7. Landong Sun & Zhan Tian & Huan Zou & Lanzhu Shao & Laixiang Sun & Guangtao Dong & Dongli Fan & Xinxing Huang & Laura Frost & Lewis-Fox James, 2019. "An Index-Based Assessment of Perceived Climate Risk and Vulnerability for the Urban Cluster in the Yangtze River Delta Region of China," Sustainability, MDPI, vol. 11(7), pages 1-15, April.
    8. Jonathan M. Winter & Fiona L. Bowen & Trevor F. Partridge & Jonathan W. Chipman, 2019. "Future Extreme Event Risk in the Rural Northeastern United States," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 109(4), pages 1110-1130, July.
    9. Shouzhi Chang & Qigang Jiang & Ying Zhao, 2018. "Integrating CFD and GIS into the Development of Urban Ventilation Corridors: A Case Study in Changchun City, China," Sustainability, MDPI, vol. 10(6), pages 1-16, May.
    10. Jonathan A. Patz & Diarmid Campbell-Lendrum & Tracey Holloway & Jonathan A. Foley, 2005. "Impact of regional climate change on human health," Nature, Nature, vol. 438(7066), pages 310-317, November.
    11. Chi Chen & Taejin Park & Xuhui Wang & Shilong Piao & Baodong Xu & Rajiv K. Chaturvedi & Richard Fuchs & Victor Brovkin & Philippe Ciais & Rasmus Fensholt & Hans Tømmervik & Govindasamy Bala & Zaichun , 2019. "China and India lead in greening of the world through land-use management," Nature Sustainability, Nature, vol. 2(2), pages 122-129, February.
    12. Jinghui Li & Wei Fang & Tao Wang & Salman Qureshi & Juha M. Alatalo & Yang Bai, 2017. "Correlations between Socioeconomic Drivers and Indicators of Urban Expansion: Evidence from the Heavily Urbanised Shanghai Metropolitan Area, China," Sustainability, MDPI, vol. 9(7), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denis Maragno & Michele Dalla Fontana & Francesco Musco, 2020. "Mapping Heat Stress Vulnerability and Risk Assessment at the Neighborhood Scale to Drive Urban Adaptation Planning," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    2. Molini, A. & Talkner, P. & Katul, G.G. & Porporato, A., 2011. "First passage time statistics of Brownian motion with purely time dependent drift and diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 1841-1852.
    3. Bing Li & Zhifeng Liu & Ying Nan & Shengnan Li & Yanmin Yang, 2018. "Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    4. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    5. Michael Tong & Berhanu Wondmagegn & Jianjun Xiang & Alana Hansen & Keith Dear & Dino Pisaniello & Blesson Varghese & Jianguo Xiao & Le Jian & Benjamin Scalley & Monika Nitschke & John Nairn & Hilary B, 2022. "Hospitalization Costs of Respiratory Diseases Attributable to Temperature in Australia and Projections for Future Costs in the 2030s and 2050s under Climate Change," IJERPH, MDPI, vol. 19(15), pages 1-16, August.
    6. Nancy Andrea Ramírez-Agudelo & Roger Porcar Anento & Miriam Villares & Elisabet Roca, 2020. "Nature-Based Solutions for Water Management in Peri-Urban Areas: Barriers and Lessons Learned from Implementation Experiences," Sustainability, MDPI, vol. 12(23), pages 1-36, November.
    7. Nicolas Taconet & Aurélie Méjean & Céline Guivarch, 2020. "Influence of climate change impacts and mitigation costs on inequality between countries," Climatic Change, Springer, vol. 160(1), pages 15-34, May.
    8. Lin Meng & Wentao Si, 2022. "The Driving Mechanism of Urban Land Expansion from 2005 to 2018: The Case of Yangzhou, China," IJERPH, MDPI, vol. 19(23), pages 1-14, November.
    9. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    10. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    11. Louise Bedsworth, 2012. "California’s local health agencies and the state’s climate adaptation strategy," Climatic Change, Springer, vol. 111(1), pages 119-133, March.
    12. Feng, Rundong & Wang, Kaiyong, 2022. "The direct and lag effects of administrative division adjustment on urban expansion patterns in Chinese mega-urban agglomerations," Land Use Policy, Elsevier, vol. 112(C).
    13. Daniele Martini & Pietro Bezzini & Michela Longo, 2024. "Environmental Impact of Electrification on Local Public Transport: Preliminary Study," Energies, MDPI, vol. 17(23), pages 1-23, November.
    14. Samereh Pourmoradian & Ali Vandshoari & Davoud Omarzadeh & Ayyoob Sharifi & Naser Sanobuar & Seyyed Samad Hosseini, 2021. "An Integrated Approach to Assess Potential and Sustainability of Handmade Carpet Production in Different Areas of the East Azerbaijan Province of Iran," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    15. Menconi, M.E. & Giordano, S. & Grohmann, D., 2022. "Revisiting global food production and consumption patterns by developing resilient food systems for local communities," Land Use Policy, Elsevier, vol. 119(C).
    16. Mehdi Makvandi & Baofeng Li & Mohamed Elsadek & Zeinab Khodabakhshi & Mohsen Ahmadi, 2019. "The Interactive Impact of Building Diversity on the Thermal Balance and Micro-Climate Change under the Influence of Rapid Urbanization," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    17. Nikolai Dronin, 2023. "Reasons to rename the UNCCD: Review of transformation of the political concept through the influence of science," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2058-2078, March.
    18. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    19. Pinki Mondal & Sonali Shukla McDermid, 2021. "Editorial for Special Issue: “Global Vegetation and Land Surface Dynamics in a Changing Climate”," Land, MDPI, vol. 10(1), pages 1-4, January.
    20. Lijuan Du & Li Xu & Yanping Li & Changshun Liu & Zhenhua Li & Jefferson S. Wong & Bo Lei, 2019. "China’s Agricultural Irrigation and Water Conservancy Projects: A Policy Synthesis and Discussion of Emerging Issues," Sustainability, MDPI, vol. 11(24), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:309-:d:303548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.