IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt8xc1k3rw.html
   My bibliography  Save this paper

Shared Micromobility: Policy, Practices, and Emerging Futures

Author

Listed:
  • Shaheen, Susan
  • Cohen, Adam
  • Broader, Jacquelyn

Abstract

Shared micromobility – or short-term access to shared bikes and scooters – provides a flexible alternative for households living in urban areas, households seeking first and last-mile connections to public transportation, and those without access to a private vehicle trying to access jobs and essential services. Up until the global pandemic, shared micromobility grew worldwide on a relatively steep growth curve, beginning in the early 2010s. Shared micro-mobility is a transportation strategy that enables users’ short-term access to a transportation mode on an as-needed basis (Shaheen et al.2019). Shared micromobility includes a number of operational models, including station-based micromobility (where a bicycle or scooter is picked up from and returned to any station or kiosk) and dockless (or stationless) micromobility (where a bicycle or scooter is picked up and returned to any location). Another service model, sometimes referred to as a ‘hybrid model’, blends aspects of station-based and dockless systems that allows users to check out a bicycle or scooter from a station and end their trip either returning it to a station or a non-station location (or vice versa) (Shaheen and Cohen 2019).

Suggested Citation

  • Shaheen, Susan & Cohen, Adam & Broader, Jacquelyn, 2022. "Shared Micromobility: Policy, Practices, and Emerging Futures," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8xc1k3rw, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt8xc1k3rw
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/8xc1k3rw.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shaheen, Susan & Martin, Elliot, 2015. "Unraveling the Modal Impacts of Bikesharing," University of California Transportation Center, Working Papers qt3cd802js, University of California Transportation Center.
    2. Jiaoe Wang & Jie Huang & Michael Dunford, 2019. "Rethinking the Utility of Public Bicycles: The Development and Challenges of Station-Less Bike Sharing in China," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    3. Shaheen, Susan PhD & Cohen, Adam, 2019. "Shared Micromoblity Policy Toolkit: Docked and Dockless Bike and Scooter Sharing," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt00k897b5, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. LE BOENNEC, Rémy & SALLADARRE, Frédéric, 2023. "Investigating the use of privately-owned micromobility modes for commuting in four European countries," MPRA Paper 119202, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Wu & Changlong Ling & Xinzhuo Li, 2019. "Study on the Accessibility and Recreational Development Potential of Lakeside Areas Based on Bike-Sharing Big Data Taking Wuhan City as an Example," Sustainability, MDPI, vol. 12(1), pages 1-20, December.
    2. Shah, Nitesh R. & Ziedan, Abubakr & Brakewood, Candace & Cherry, Christopher R., 2023. "Shared e-scooter service providers with large fleet size have a competitive advantage: Findings from e-scooter demand and supply analysis of Nashville, Tennessee," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    3. De Zhao & Ghim Ping Ong & Wei Wang & Wei Zhou, 2021. "Estimating Public Bicycle Trip Characteristics with Consideration of Built Environment Data," Sustainability, MDPI, vol. 13(2), pages 1-13, January.
    4. Sangwan Lee, 2022. "An In-Depth Understanding of the Residential Property Value Premium of a Bikesharing Service in Portland, Oregon," Land, MDPI, vol. 11(9), pages 1-16, August.
    5. Yvonne Hail & Ronald McQuaid, 2021. "The Concept of Fairness in Relation to Women Transport Users," Sustainability, MDPI, vol. 13(5), pages 1-15, March.
    6. Laa, Barbara & Leth, Ulrich, 2020. "Survey of E-scooter users in Vienna: Who they are and how they ride," Journal of Transport Geography, Elsevier, vol. 89(C).
    7. Nikolaos-Fivos Galatoulas & Konstantinos N. Genikomsakis & Christos S. Ioakimidis, 2020. "Spatio-Temporal Trends of E-Bike Sharing System Deployment: A Review in Europe, North America and Asia," Sustainability, MDPI, vol. 12(11), pages 1-17, June.
    8. Yuan Li & Zhenjun Zhu & Xiucheng Guo, 2019. "Operating Characteristics of Dockless Bike-Sharing Systems near Metro Stations: Case Study in Nanjing City, China," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    9. Tianjian Yang & Ye Li & Simin Zhou & Yu Zhang, 2019. "Dynamic Feedback Analysis of Influencing Factors and Challenges of Dockless Bike-Sharing Sustainability in China," Sustainability, MDPI, vol. 11(17), pages 1-17, August.
    10. Fuller, Sam & Fitch, Dillon & D'Agostino, Mollie C., 2021. "Local Policies for Better Micromobility," Institute of Transportation Studies, Working Paper Series qt8mw5j82x, Institute of Transportation Studies, UC Davis.
    11. Virginie Boutueil & Luc Nemett & Thomas Quillerier, 2021. "Trends in Competition among Digital Platforms for Shared Mobility: Insights from a Worldwide Census and Prospects for Research," Post-Print hal-03388213, HAL.
    12. Ying Ni & Jiaqi Chen, 2020. "Exploring the Effects of the Built Environment on Two Transfer Modes for Metros: Dockless Bike Sharing and Taxis," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    13. Arias-Molinares, Daniela & Xu, Yihan & Büttner, Benjamin & Duran-Rodas, David, 2023. "Exploring key spatial determinants for mobility hub placement based on micromobility ridership," Journal of Transport Geography, Elsevier, vol. 110(C).
    14. Álvaro Aguilera-García & Juan Gomez & Natalia Sobrino & Juan José Vinagre Díaz, 2021. "Moped Scooter Sharing: Citizens’ Perceptions, Users’ Behavior, and Implications for Urban Mobility," Sustainability, MDPI, vol. 13(12), pages 1-26, June.
    15. Monika Hamerska & Monika Ziółko & Patryk Stawiarski, 2022. "A Sustainable Transport System—The MMQUAL Model of Shared Micromobility Service Quality Assessment," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    16. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    17. Huo, Jinghai & Yang, Hongtai & Li, Chaojing & Zheng, Rong & Yang, Linchuan & Wen, Yi, 2021. "Influence of the built environment on E-scooter sharing ridership: A tale of five cities," Journal of Transport Geography, Elsevier, vol. 93(C).
    18. Arias-Molinares, Daniela & Romanillos, Gustavo & García-Palomares, Juan Carlos & Gutiérrez, Javier, 2021. "Exploring the spatio-temporal dynamics of moped-style scooter sharing services in urban areas," Journal of Transport Geography, Elsevier, vol. 96(C).
    19. Owain James & J I Swiderski & John Hicks & Denis Teoman & Ralph Buehler, 2019. "Pedestrians and E-Scooters: An Initial Look at E-Scooter Parking and Perceptions by Riders and Non-Riders," Sustainability, MDPI, vol. 11(20), pages 1-13, October.
    20. Kshitija Desai & Christelle Al Haddad & Constantinos Antoniou, 2021. "Roadmap to Early Implementation of Passenger Air Mobility: Findings from a Delphi Study," Sustainability, MDPI, vol. 13(19), pages 1-17, September.

    More about this item

    Keywords

    Social and Behavioral Sciences;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt8xc1k3rw. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.