IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i8p2292-d223425.html
   My bibliography  Save this article

Regional Multivariate Indices of Water Use Potential for the Continental United States

Author

Listed:
  • Jonah D. White

    (Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI 48824, USA)

  • Elizabeth A. Mack

    (Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI 48824, USA)

  • Sharon L. Harlan

    (Department of Health Sciences and Department of Sociology and Anthropology, Northeastern University, Boston, MA 02115, USA)

  • E. Scott Krayenhoff

    (School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada)

  • Matei Georgescu

    (School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ 85281, USA)

  • Kyle Redican

    (Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI 48824, USA)

Abstract

The necessity of freshwater for sustaining human life has prompted the development of numerous estimation techniques and metrics for understanding where, when, and why water is used. While estimates are valuable, techniques for estimating water use vary, and may be difficult to replicate and/or unavailable on an annual basis or at the regional scale. To address these drawbacks, this paper proposes a series of regional indices for the continental United States that could serve as proxies for water use that are based on key variables associated with water use. Regional indices at the county level are computed, compared against each other, and compared to water withdrawal estimates from the United States Geological Survey (USGS). These comparisons highlight differences amongst the derived indices and the water withdrawal estimates. They also demonstrate promise for future development and implementation of related indices, given their similarities with water withdrawal estimates. Using only a small set of variables, these indices achieve some degree of similarity (~20%) to estimates of water withdrawals. The comparative data availability and ease of estimating these indices, as well as the ability to decompose the additive indices into their constituent use categories and constituent variables, renders them practically useful to water managers and other decision makers for identification of locally specific drivers of water use and implementation of more geographically-appropriate policies to manage scarce water resources.

Suggested Citation

  • Jonah D. White & Elizabeth A. Mack & Sharon L. Harlan & E. Scott Krayenhoff & Matei Georgescu & Kyle Redican, 2019. "Regional Multivariate Indices of Water Use Potential for the Continental United States," Sustainability, MDPI, vol. 11(8), pages 1-24, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:8:p:2292-:d:223425
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/8/2292/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/8/2292/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grafton, R. Quentin & Kompas, Tom & To, Hang & Ward, Michael B., 2009. "Residential Water Consumption: A Cross Country Analysis," Research Reports 94823, Australian National University, Environmental Economics Research Hub.
    2. Grafton, R. Quentin & Kompas, Tom & To, Hang & Ward, Michael B., 2009. "Residential Water Consumption: A Cross Country Analysis," Research Reports 94823, Australian National University, Environmental Economics Research Hub.
    3. Deepak K. Ray & James S. Gerber & Graham K. MacDonald & Paul C. West, 2015. "Climate variation explains a third of global crop yield variability," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    4. Georgia Destouni & Fernando Jaramillo & Carmen Prieto, 2013. "Hydroclimatic shifts driven by human water use for food and energy production," Nature Climate Change, Nature, vol. 3(3), pages 213-217, March.
    5. Graeme Dandy & Tin Nguyen & Carolyn Davies, 1997. "Estimating Residential Water Demand in the Presence of Free Allowances," Land Economics, University of Wisconsin Press, vol. 73(1), pages 125-139.
    6. E. Scott Krayenhoff & Mohamed Moustaoui & Ashley M. Broadbent & Vishesh Gupta & Matei Georgescu, 2018. "Diurnal interaction between urban expansion, climate change and adaptation in US cities," Nature Climate Change, Nature, vol. 8(12), pages 1097-1103, December.
    7. Edward Feser & Stuart Sweeney & Henry Renski, 2005. "A Descriptive Analysis of Discrete U.S. Industrial Complexes," Journal of Regional Science, Wiley Blackwell, vol. 45(2), pages 395-419, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mónica Maldonado-Devis & Vicent Almenar-Llongo, 2021. "A Panel Data Estimation of Domestic Water Demand with IRT Tariff Structure: The Case of the City of Valencia (Spain)," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    2. David Hoyos & Alaitz Artabe, 2017. "Regional Differences in the Price Elasticity of Residential Water Demand in Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 847-865, February.
    3. Duyen Nhat Lam Tran & Tien Dinh Nguyen & Thuy Thu Pham & Roberto F. Rañola & Thinh An Nguyen, 2021. "Improving Irrigation Water Use Efficiency of Robusta Coffee ( Coffea canephora ) Production in Lam Dong Province, Vietnam," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    4. Kiran B Krishnamurthy, Chandra & Kriström, Bengt, 2013. "A cross-country analysis of residential electricity demand in 11 OECD-countries," CERE Working Papers 2013:5, CERE - the Center for Environmental and Resource Economics, revised 30 Jun 2014.
    5. Djiby Racine Thiam & Ariel Dinar & Hebert Ntuli, 2021. "Promotion of residential water conservation measures in South Africa: the role of water-saving equipment," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(1), pages 173-210, January.
    6. Fuentes, E. & Arce, L. & Salom, J., 2018. "A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1530-1547.
    7. Nauges, Celine & Whittington, Dale, 2017. "Evaluating the Performance of Alternative Municipal Water Tariff Designs: Quantifying the Tradeoffs between Equity, Economic Efficiency, and Cost Recovery," World Development, Elsevier, vol. 91(C), pages 125-143.
    8. -, 2015. "La economía del cambio climático en América Latina y el Caribe: paradojas y desafíos del desarrollo sostenible," Libros y Documentos Institucionales, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), number 37310 edited by Cepal.
    9. Boogen, Nina & Datta, Souvik & Filippini, Massimo, 2021. "Estimating residential electricity demand: New empirical evidence," Energy Policy, Elsevier, vol. 158(C).
    10. Kenneth A. Baerenklau & Kurt A. Schwabe & Ariel Dinar, 2014. "The Residential Water Demand Effect of Increasing Block Rate Water Budgets," Land Economics, University of Wisconsin Press, vol. 90(4), pages 683-699.
    11. Garrone, Paola & Grilli, Luca & Marzano, Riccardo, 2019. "Price elasticity of water demand considering scarcity and attitudes," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
    12. Andres,Luis Alberto & Espineira,Gonzalo & Joseph,George & Sember,German Eduardo & Thibert,Michael David, 2020. "Estimating the Magnitude of Water Supply and Sanitation Subsidies," Policy Research Working Paper Series 9448, The World Bank.
    13. Jana Hortová & Ladislav Kristoufek, 2014. "Price elasticity of household water demand in the Czech Republic," Working Papers IES 2014/38, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Dec 2014.
    14. Aisbett, Emma & Steinhauser, Ralf, 2011. "Does anybody give a dam? The importance of public awareness for urban water conservation during drought," Research Reports 107850, Australian National University, Environmental Economics Research Hub.
    15. Kenneth A. Baerenklau & Kurt A. Schwabe & Ariel Dinar, 2014. "The Residential Water Demand Effect of Increasing Block Rate Water Budgets," Land Economics, University of Wisconsin Press, vol. 90(4), pages 683-699.
    16. Dália Loureiro & Aisha Mamade & Marta Cabral & Conceição Amado & Dídia Covas, 2016. "A Comprehensive Approach for Spatial and Temporal Water Demand Profiling to Improve Management in Network Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3443-3457, August.
    17. Chih-Hao Wang & Hongwei Dong, 2017. "Responding to the Drought: A Spatial Statistical Approach to Investigating Residential Water Consumption in Fresno, California," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    18. Martins, Rita & Antunes, Micaela & Fortunato, Adelino, 2020. "Regulatory changes to Portugal's social tariffs: Carrying water in a sieve?," Utilities Policy, Elsevier, vol. 64(C).
    19. Liu, Ariane & Giurco, Damien & Mukheibir, Pierre, 2015. "Motivating metrics for household water-use feedback," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 29-46.
    20. Janine Stone & Christopher Goemans & Marco Costanigro, 2019. "Variation in Water Demand Responsiveness to Utility Policies and Weather: A Latent-Class Model," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-33, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:8:p:2292-:d:223425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.