IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i7p2114-d221284.html
   My bibliography  Save this article

Gas Multiple Flow Mechanisms and Apparent Permeability Evaluation in Shale Reservoirs

Author

Listed:
  • Xuelei Feng

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Fengshan Ma

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China)

  • Haijun Zhao

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China)

  • Gang Liu

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Jie Guo

    (Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China)

Abstract

Gas flow mechanisms and apparent permeability are important factors for predicating gas production in shale reservoirs. In this study, an apparent permeability model for describing gas multiple flow mechanisms in nanopores is developed and incorporated into the COMSOL solver. In addition, a dynamic permeability equation is proposed to analyze the effects of matrix shrinkage and stress sensitivity. The results indicate that pore size enlargement increases gas seepage capacity of a shale reservoir. Compared to conventional reservoirs, the ratio of apparent permeability to Darcy permeability is higher by about 1–2 orders of magnitude in small pores (1–10 nm) and at low pressures (0–5 MPa) due to multiple flow mechanisms. Flow mechanisms mainly include surface diffusion, Knudsen diffusion, and skip flow. Its weight is affected by pore size, reservoir pressure, and temperature, especially pore size ranging from 1 nm to 5 nm and reservoir pressures below 5 MPa. The combined effects of matrix shrinkage and stress sensitivity induce nanopores closure. Therefore, permeability declines about 1 order of magnitude compare to initial apparent permeability. The results also show that permeability should be adjusted during gas production to ensure a better accuracy.

Suggested Citation

  • Xuelei Feng & Fengshan Ma & Haijun Zhao & Gang Liu & Jie Guo, 2019. "Gas Multiple Flow Mechanisms and Apparent Permeability Evaluation in Shale Reservoirs," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:2114-:d:221284
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/7/2114/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/7/2114/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hongxun Liu & Jianglong Li, 2018. "The US Shale Gas Revolution and Its Externality on Crude Oil Prices: A Counterfactual Analysis," Sustainability, MDPI, vol. 10(3), pages 1-17, March.
    2. Zhaohui Chong & Xuehua Li & Xiangyu Chen & Ji Zhang & Jingzheng Lu, 2017. "Numerical Investigation into the Effect of Natural Fracture Density on Hydraulic Fracture Network Propagation," Energies, MDPI, vol. 10(7), pages 1-33, July.
    3. Rahm, Dianne, 2011. "Regulating hydraulic fracturing in shale gas plays: The case of Texas," Energy Policy, Elsevier, vol. 39(5), pages 2974-2981, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amjed M. Hassan & Mohamed A. Mahmoud & Abdulaziz A. Al-Majed & Dhafer Al-Shehri & Ayman R. Al-Nakhli & Mohammed A. Bataweel, 2019. "Gas Production from Gas Condensate Reservoirs Using Sustainable Environmentally Friendly Chemicals," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    2. Abelly, Elieneza Nicodemus & Yang, Feng & Ngata, Mbega Ramadhani & Mwakipunda, Grant Charles & Shanghvi, Eric Richard, 2024. "A field study of pore-network systems on the tight shale gas formation through adsorption-desorption technique and mercury intrusion capillary porosimeter: Percolation theory and simulations," Energy, Elsevier, vol. 302(C).
    3. Li, Jing & Xie, Yetong & Liu, Huimin & Zhang, Xuecai & Li, Chuanhua & Zhang, Lisong, 2023. "Combining macro and micro experiments to reveal the real-time evolution of permeability of shale," Energy, Elsevier, vol. 262(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amjed M. Hassan & Mohamed A. Mahmoud & Abdulaziz A. Al-Majed & Dhafer Al-Shehri & Ayman R. Al-Nakhli & Mohammed A. Bataweel, 2019. "Gas Production from Gas Condensate Reservoirs Using Sustainable Environmentally Friendly Chemicals," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    2. Zilliox, Skylar & Smith, Jessica M., 2017. "Memorandums of understanding and public trust in local government for Colorado's unconventional energy industry," Energy Policy, Elsevier, vol. 107(C), pages 72-81.
    3. Kriesky, J. & Goldstein, B.D. & Zell, K. & Beach, S., 2013. "Differing opinions about natural gas drilling in two adjacent counties with different levels of drilling activity," Energy Policy, Elsevier, vol. 58(C), pages 228-236.
    4. Zhou, Junping & Tian, Shifeng & Zhou, Lei & Xian, Xuefu & Yang, Kang & Jiang, Yongdong & Zhang, Chengpeng & Guo, Yaowen, 2020. "Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale," Energy, Elsevier, vol. 191(C).
    5. Yasminah Beebeejaun, 2017. "Exploring the intersections between local knowledge and environmental regulation: A study of shale gas extraction in Texas and Lancashire," Environment and Planning C, , vol. 35(3), pages 417-433, May.
    6. Fry, Matthew, 2013. "Urban gas drilling and distance ordinances in the Texas Barnett Shale," Energy Policy, Elsevier, vol. 62(C), pages 79-89.
    7. Timmins, Christopher & Vissing, Ashley, 2022. "Environmental justice and Coasian bargaining: The role of race, ethnicity, and income in lease negotiations for shale gas," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    8. Ningbo Zhang & Changyou Liu & Baobao Chen, 2018. "A Case Study of Presplitting Blasting Parameters of Hard and Massive Roof Based on the Interaction between Support and Overlying Strata," Energies, MDPI, vol. 11(6), pages 1-14, May.
    9. Arnold, Gwen & Farrer, Benjamin & Holahan, Robert, 2018. "How do landowners learn about high-volume hydraulic fracturing? A survey of Eastern Ohio landowners in active or proposed drilling units," Energy Policy, Elsevier, vol. 114(C), pages 455-464.
    10. Dianne Rahm & Jayce L. Farmer & Billy Fields, 2016. "The Eagle Ford Shale Development and Local Government Fiscal Behavior," Public Budgeting & Finance, Wiley Blackwell, vol. 36(3), pages 45-68, September.
    11. Li, Yujie & Zhai, Cheng & Xu, Jizhao & Yu, Xu & Sun, Yong & Cong, Yuzhou & Tang, Wei & Zheng, Yangfeng, 2023. "Effects of steam treatment on the internal moisture and physicochemical structure of coal and their implications for coalbed methane recovery," Energy, Elsevier, vol. 270(C).
    12. Huishu Li & Finlay Carlson & Asma Hanif & Josh Zier & Kenneth Carlson, 2023. "A Water Stewardship Evaluation Model for Oil and Gas Operators," Energy and Environment Research, Canadian Center of Science and Education, vol. 13(1), pages 1-16, June.
    13. Munasib, Abdul & Rickman, Dan S., 2015. "Regional economic impacts of the shale gas and tight oil boom: A synthetic control analysis," Regional Science and Urban Economics, Elsevier, vol. 50(C), pages 1-17.
    14. Ali Shafiei & Maurice B. Dusseault & Ehsan Kosari & Morteza N. Taleghani, 2018. "Natural Fractures Characterization and In Situ Stresses Inference in a Carbonate Reservoir—An Integrated Approach," Energies, MDPI, vol. 11(2), pages 1-26, February.
    15. Long Ren & Wendong Wang & Yuliang Su & Mingqiang Chen & Cheng Jing & Nan Zhang & Yanlong He & Jian Sun, 2018. "Multiporosity and Multiscale Flow Characteristics of a Stimulated Reservoir Volume (SRV)-Fractured Horizontal Well in a Tight Oil Reservoir," Energies, MDPI, vol. 11(10), pages 1-14, October.
    16. Roberts, Gavin, 2019. "Revisiting the Drivers of Natural Gas Prices. A replication study of Brown & Yücel (The Energy Journal, 2008)," International Journal for Re-Views in Empirical Economics (IREE), ZBW - Leibniz Information Centre for Economics, vol. 3(2019-2), pages 1-24.
    17. Lu, Yutian & Wang, Bo & Zhao, Yingying & Yang, Xiaochen & Li, Lizhe & Dong, Mingzhi & Lv, Qin & Zhou, Fujian & Gu, Ning & Shang, Li, 2022. "Physics-informed surrogate modeling for hydro-fracture geometry prediction based on deep learning," Energy, Elsevier, vol. 253(C).
    18. Vásquez Cordano, Arturo L. & Zellou, Abdel M., 2020. "Super cycles in natural gas prices and their impact on Latin American energy and environmental policies," Resources Policy, Elsevier, vol. 65(C).
    19. Milt, Austin W. & Armsworth, Paul R., 2017. "Performance of a cap and trade system for managing environmental impacts of shale gas surface infrastructure," Ecological Economics, Elsevier, vol. 131(C), pages 399-406.
    20. Jenner, Steffen & Lamadrid, Alberto J., 2013. "Shale gas vs. coal: Policy implications from environmental impact comparisons of shale gas, conventional gas, and coal on air, water, and land in the United States," Energy Policy, Elsevier, vol. 53(C), pages 442-453.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:2114-:d:221284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.