IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i7p1964-d219397.html
   My bibliography  Save this article

Environmentally Friendly Production of Methane from Natural Gas Hydrate Using Carbon Dioxide

Author

Listed:
  • Bjørn Kvamme

    (Strategic Carbon LLC, 20 Ladd St., Suite 200, Portsmouth, NH 03801, USA)

Abstract

Huge amounts of natural gas hydrate are trapped in an ice-like structure (hydrate). Most of these hydrates have been formed from biogenic degradation of organic waste in the upper crust and are almost pure methane hydrates. With up to 14 mol% methane, concentrated inside a water phase, this is an attractive energy source. Unlike conventional hydrocarbons, these hydrates are widely distributed around the world, and might in total amount to more than twice the energy in all known sources of conventional fossil fuels. A variety of methods for producing methane from hydrate-filled sediments have been proposed and developed through laboratory scale experiments, pilot scale experiments, and theoretical considerations. Thermal stimulation (steam, hot water) and pressure reduction has by far been the dominating technology platforms during the latest three decades. Thermal stimulation as the primary method is too expensive. There are many challenges related to pressure reduction as a method. Conditions of pressure can be changed to outside the hydrate stability zone, but dissociation energy still needs to be supplied. Pressure release will set up a temperature gradient and heat can be transferred from the surrounding formation, but it has never been proven that the capacity and transport ability will ever be enough to sustain a commercial production rate. On the contrary, some recent pilot tests have been terminated due to freezing down. Other problems include sand production and water production. A more novel approach of injecting CO 2 into natural gas hydrate-filled sediments have also been investigated in various laboratories around the world with varying success. In this work, we focus on some frequent misunderstandings related to this concept. The only feasible mechanism for the use of CO 2 goes though the formation of a new CO 2 hydrate from free water in the pores and the incoming CO 2 . As demonstrated in this work, the nucleation of a CO 2 hydrate film rapidly forms a mass transport barrier that slows down any further growth of the CO 2 hydrate. Addition of small amounts of surfactants can break these hydrate films. We also demonstrate that the free energy of the CO 2 hydrate is roughly 2 kJ/mol lower than the free energy of the CH 4 hydrate. In addition to heat release from the formation of the new CO 2 hydrate, the increase in ion content of the remaining water will dissociate CH 4 hydrate before the CO 2 hydrate due to the difference in free energy.

Suggested Citation

  • Bjørn Kvamme, 2019. "Environmentally Friendly Production of Methane from Natural Gas Hydrate Using Carbon Dioxide," Sustainability, MDPI, vol. 11(7), pages 1-23, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:1964-:d:219397
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/7/1964/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/7/1964/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Solomon Aforkoghene Aromada & Bjørn Kvamme & Na Wei & Navid Saeidi, 2019. "Enthalpies of Hydrate Formation and Dissociation from Residual Thermodynamics," Energies, MDPI, vol. 12(24), pages 1-26, December.
    2. Bjørn Kvamme & Jinzhou Zhao & Na Wei & Navid Saeidi, 2020. "Hydrate—A Mysterious Phase or Just Misunderstood?," Energies, MDPI, vol. 13(4), pages 1-26, February.
    3. Bjørn Kvamme & Jinzhou Zhao & Na Wei & Wantong Sun & Navid Saeidi & Jun Pei & Tatiana Kuznetsova, 2020. "Hydrate Production Philosophy and Thermodynamic Calculations," Energies, MDPI, vol. 13(3), pages 1-34, February.
    4. Bjørn Kvamme & Jinzhou Zhao & Na Wei & Wantong Sun & Mojdeh Zarifi & Navid Saeidi & Shouwei Zhou & Tatiana Kuznetsova & Qingping Li, 2020. "Why Should We Use Residual Thermodynamics for Calculation of Hydrate Phase Transitions?," Energies, MDPI, vol. 13(16), pages 1-30, August.
    5. Na Wei & Wantong Sun & Yingfeng Meng & Jinzhou Zhao & Bjørn Kvamme & Shouwei Zhou & Liehui Zhang & Qingping Li & Yao Zhang & Lin Jiang & Haitao Li & Jun Pei, 2020. "Hydrate Formation and Decomposition Regularities in Offshore Gas Reservoir Production Pipelines," Energies, MDPI, vol. 13(1), pages 1-22, January.
    6. Sun, Wantong & Wei, Na & Zhao, Jinzhou & Kvamme, Bjørn & Zhou, Shouwei & Zhang, Liehui & Almenningen, Stian & Kuznetsova, Tatiana & Ersland, Geir & Li, Qingping & Pei, Jun & Li, Cong & Xiong, Chenyang, 2022. "Imitating possible consequences of drilling through marine hydrate reservoir," Energy, Elsevier, vol. 239(PA).
    7. Bjørn Kvamme & Matthew Clarke, 2021. "Hydrate Phase Transition Kinetic Modeling for Nature and Industry–Where Are We and Where Do We Go?," Energies, MDPI, vol. 14(14), pages 1-47, July.
    8. Bjørn Kvamme & Richard B. Coffin & Jinzhou Zhao & Na Wei & Shouwei Zhou & Qingping Li & Navid Saeidi & Yu-Chien Chien & Derek Dunn-Rankin & Wantong Sun & Mojdeh Zarifi, 2019. "Stages in the Dynamics of Hydrate Formation and Consequences for Design of Experiments for Hydrate Formation in Sediments," Energies, MDPI, vol. 12(17), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:1964-:d:219397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.