IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i6p1634-d214979.html
   My bibliography  Save this article

Intermodal Container Routing: Integrating Long-Haul Routing and Local Drayage Decisions

Author

Listed:
  • Hilde Heggen

    (UHasselt, Research Group Logistics, Agoralaan, 3590 Diepenbeek, Belgium
    Maastricht University, Department of Quantitative Economics, P.O. Box 616, 6200 MD Maastricht, The Netherlands)

  • Yves Molenbruch

    (UHasselt, Research Group Logistics, Agoralaan, 3590 Diepenbeek, Belgium
    Research Foundation Flanders (FWO), Egmontstraat 5, 1000 Brussel, Belgium)

  • An Caris

    (UHasselt, Research Group Logistics, Agoralaan, 3590 Diepenbeek, Belgium)

  • Kris Braekers

    (UHasselt, Research Group Logistics, Agoralaan, 3590 Diepenbeek, Belgium)

Abstract

Intermodal logistics service providers decide on the routing of demand through their service network. Long-haul routing decisions determine the selected departure and arrival terminals for containers and imply corresponding drayage tasks. Traditionally, given these long-haul routes and fixed drayage tasks, drayage operations are planned in a second phase by establishing truck routes to transport containers to and from terminals by truck. In this paper, operational decisions on local drayage routing in large-volume freight regions with multiple terminals on the one hand, and intermodal long-haul routing on the other hand are merged into an integrated intermodal routing problem. Different long-haul routing decisions imply different drayage tasks to be performed and thus impact total trucking costs. The approach aims at reducing the number of road kilometres and increases bundling opportunities by maximising the long-haul capacity utilisation. In this way, it contributes to the modal shift towards intermodal transport and a more sustainable transport system. As a weekly planning horizon is used, a maximum daily active time and a minimum overnight’s rest are included for multi-day drayage routing. A large neighbourhood search heuristic is proposed to solve the integrated intermodal routing problem. This integrated planning approach provides decision support for routing customer orders throughout the intermodal network with the aim of minimising total transport costs and maximising capacity utilisation. Experiments show the added value of the integrated approach, which uses more information to make better-informed decisions and increase the capacity utilisation. The largest savings in trucking costs are obtained for clustered instances with demand characteristics closest to real-life cases. Finally, a real-life case study analyses the impact of tactical service network design decisions on the total operational costs.

Suggested Citation

  • Hilde Heggen & Yves Molenbruch & An Caris & Kris Braekers, 2019. "Intermodal Container Routing: Integrating Long-Haul Routing and Local Drayage Decisions," Sustainability, MDPI, vol. 11(6), pages 1-36, March.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:6:p:1634-:d:214979
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/6/1634/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/6/1634/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francis, Peter & Zhang, Guangming & Smilowitz, Karen, 2007. "Improved modeling and solution methods for the multi-resource routing problem," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1045-1059, August.
    2. Erera, Alan L. & Morales, Juan C. & Savelsbergh, Martin, 2005. "Global intermodal tank container management for the chemical industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 41(6), pages 551-566, November.
    3. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    4. Zhang, M. & Pel, A.J., 2016. "Synchromodal hinterland freight transport: Model study for the port of Rotterdam," Journal of Transport Geography, Elsevier, vol. 52(C), pages 1-10.
    5. Zhang, Ruiyou & Yun, Won Young & Moon, Ilkyeong, 2009. "A reactive tabu search algorithm for the multi-depot container truck transportation problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(6), pages 904-914, November.
    6. Adria Soriano & Margaretha Gansterer & Richard F. Hartl, 2018. "The two-region multi-depot pickup and delivery problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 1077-1108, October.
    7. Shiri, Samaneh & Huynh, Nathan, 2016. "Optimization of drayage operations with time-window constraints," International Journal of Production Economics, Elsevier, vol. 176(C), pages 7-20.
    8. Caramia, M. & Guerriero, F., 2009. "A heuristic approach to long-haul freight transportation with multiple objective functions," Omega, Elsevier, vol. 37(3), pages 600-614, June.
    9. van Riessen, B. & Negenborn, R.R. & Dekker, R., 2016. "Real-time Container Transport Planning with Decision Trees based on Offline Obtained Optimal Solutions," Econometric Institute Research Papers EI2016-14, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    10. Hilde Heggen & Kris Braekers & An Caris, 2018. "A multi-objective approach for intermodal train load planning," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(2), pages 341-366, March.
    11. Marcus Posada & Henrik Andersson & Carl H. Häll, 2017. "The integrated dial-a-ride problem with timetabled fixed route service," Public Transport, Springer, vol. 9(1), pages 217-241, July.
    12. Assadipour, Ghazal & Ke, Ginger Y. & Verma, Manish, 2015. "Planning and managing intermodal transportation of hazardous materials with capacity selection and congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 76(C), pages 45-57.
    13. Tomas Ambra & An Caris & Cathy Macharis, 2019. "Towards freight transport system unification: reviewing and combining the advancements in the physical internet and synchromodal transport research," International Journal of Production Research, Taylor & Francis Journals, vol. 57(6), pages 1606-1623, March.
    14. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T. & Raoufi, R., 2014. "Multimodal freight transportation planning: A literature review," European Journal of Operational Research, Elsevier, vol. 233(1), pages 1-15.
    15. Bock, Stefan, 2010. "Real-time control of freight forwarder transportation networks by integrating multimodal transport chains," European Journal of Operational Research, Elsevier, vol. 200(3), pages 733-746, February.
    16. Nossack, Jenny & Pesch, Erwin, 2013. "A truck scheduling problem arising in intermodal container transportation," European Journal of Operational Research, Elsevier, vol. 230(3), pages 666-680.
    17. Martin W. P. Savelsbergh, 1992. "The Vehicle Routing Problem with Time Windows: Minimizing Route Duration," INFORMS Journal on Computing, INFORMS, vol. 4(2), pages 146-154, May.
    18. Andreas Rudi & Magnus Fröhling & Konrad Zimmer & Frank Schultmann, 2016. "Freight transportation planning considering carbon emissions and in-transit holding costs: a capacitated multi-commodity network flow model," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(2), pages 123-160, June.
    19. Verma, Manish & Verter, Vedat & Zufferey, Nicolas, 2012. "A bi-objective model for planning and managing rail-truck intermodal transportation of hazardous materials," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 132-149.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zahra Fattahi & Javad Behnamian, 2022. "Location and transportation of intermodal hazmat considering equipment capacity and congestion impact: elastic method and sub-population genetic algorithm," Annals of Operations Research, Springer, vol. 316(1), pages 303-341, September.
    2. Snežana Tadić & Milovan Kovač & Mladen Krstić & Violeta Roso & Nikolina Brnjac, 2021. "The Selection of Intermodal Transport System Scenarios in the Function of Southeastern Europe Regional Development," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    3. Jiahao Zhao & Xiaoning Zhu & Li Wang, 2020. "Study on Scheme of Outbound Railway Container Organization in Rail-Water Intermodal Transportation," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    4. Snežana Tadić & Mladen Krstić & Violeta Roso & Nikolina Brnjac, 2019. "Planning an Intermodal Terminal for the Sustainable Transport Networks," Sustainability, MDPI, vol. 11(15), pages 1-20, July.
    5. Bustos-Coral, Daniel & Costa, Alysson M., 2022. "Drayage routing with heterogeneous fleet, compatibility constraints, and truck load configurations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    6. Escudero-Santana, Alejandro & Muñuzuri, Jesús & Cortés, Pablo & Onieva, Luis, 2021. "The one container drayage problem with soft time windows," Research in Transportation Economics, Elsevier, vol. 90(C).
    7. Xiaodong Li & Haibo Kuang & Yan Hu, 2019. "Carbon Mitigation Strategies of Port Selection and Multimodal Transport Operations—A Case Study of Northeast China," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    8. Panagiotis Ypsilantis & Rob Zuidwijk, 2019. "Collaborative Fleet Deployment and Routing for Sustainable Transport," Sustainability, MDPI, vol. 11(20), pages 1-26, October.
    9. Molenbruch, Yves & Braekers, Kris & Hirsch, Patrick & Oberscheider, Marco, 2021. "Analyzing the benefits of an integrated mobility system using a matheuristic routing algorithm," European Journal of Operational Research, Elsevier, vol. 290(1), pages 81-98.
    10. Bernard G. Zweers & Sandjai Bhulai & Rob D. Mei, 2021. "Planning hinterland container transportation in congested deep-sea terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(3), pages 583-622, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sakti, Sekar & Zhang, Lele & Thompson, Russell G., 2023. "Synchronization in synchromodality," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    2. Arturo E. Pérez Rivera & Martijn R. K. Mes, 2019. "Integrated scheduling of drayage and long-haul operations in synchromodal transport," Flexible Services and Manufacturing Journal, Springer, vol. 31(3), pages 763-806, September.
    3. Johannes Rentschler & Ralf Elbert & Felix Weber, 2022. "Promoting Sustainability through Synchromodal Transportation: A Systematic Literature Review and Future Fields of Research," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
    4. Escudero-Santana, Alejandro & Muñuzuri, Jesús & Cortés, Pablo & Onieva, Luis, 2021. "The one container drayage problem with soft time windows," Research in Transportation Economics, Elsevier, vol. 90(C).
    5. Archetti, Claudia & Peirano, Lorenzo & Speranza, M. Grazia, 2022. "Optimization in multimodal freight transportation problems: A Survey," European Journal of Operational Research, Elsevier, vol. 299(1), pages 1-20.
    6. Bustos-Coral, Daniel & Costa, Alysson M., 2022. "Drayage routing with heterogeneous fleet, compatibility constraints, and truck load configurations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    7. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T., 2017. "A metaheuristic for the multimodal network flow problem with product quality preservation and empty repositioning," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 321-344.
    8. Song, Yujian & Zhang, Jiantong & Liang, Zhe & Ye, Chunming, 2017. "An exact algorithm for the container drayage problem under a separation mode," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 231-254.
    9. Bart Van Riessen & Judith Mulder & Rudy R. Negenborn & Rommert Dekker, 2021. "Revenue management with two fare classes in synchromodal container transportation," Flexible Services and Manufacturing Journal, Springer, vol. 33(3), pages 623-662, September.
    10. Gumuskaya, Volkan & van Jaarsveld, Willem & Dijkman, Remco & Grefen, Paul & Veenstra, Albert, 2020. "Dynamic barge planning with stochastic container arrivals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    11. Giusti, Riccardo & Manerba, Daniele & Bruno, Giorgio & Tadei, Roberto, 2019. "Synchromodal logistics: An overview of critical success factors, enabling technologies, and open research issues," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 92-110.
    12. Soriano, Adria & Vidal, Thibaut & Gansterer, Margaretha & Doerner, Karl, 2020. "The vehicle routing problem with arrival time diversification on a multigraph," European Journal of Operational Research, Elsevier, vol. 286(2), pages 564-575.
    13. Thibault Delbart & Yves Molenbruch & Kris Braekers & An Caris, 2021. "Uncertainty in Intermodal and Synchromodal Transport: Review and Future Research Directions," Sustainability, MDPI, vol. 13(7), pages 1-25, April.
    14. Fan, Tijun & Pan, Qianlan & Pan, Fei & Zhou, Wei & Chen, Jingyi, 2020. "Intelligent logistics integration of internal and external transportation with separation mode," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    15. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T. & Raoufi, R., 2014. "Multimodal freight transportation planning: A literature review," European Journal of Operational Research, Elsevier, vol. 233(1), pages 1-15.
    16. Jiahao Zhao & Xiaoning Zhu & Li Wang, 2020. "Study on Scheme of Outbound Railway Container Organization in Rail-Water Intermodal Transportation," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    17. Lange, Ann-Kathrin & Nellen, Nicole & Jahn, Carlos, 2022. "Truck appointment systems: How can they be improved and what are their limits?," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Jahn, Carlos & Blecker, Thorsten & Ringle, Christian M. (ed.), Changing Tides: The New Role of Resilience and Sustainability in Logistics and Supply Chain Management – Innovative Approaches for the Shift to a New , volume 33, pages 615-655, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    18. Xing, Xinjie & Song, Dongping & Qiu, Chengfeng & Drake, Paul R. & Zhan, Yuanzhu, 2023. "Joint tank container demurrage policy and flow optimisation using a progressive hedging algorithm with expanded time-space network," European Journal of Operational Research, Elsevier, vol. 307(2), pages 663-679.
    19. Samaneh Shiri & Nathan Huynh & Daniel Smith & Frank Harder, 2022. "Impact of Second-Tier Container Port Facilities on Drayage Operation," Logistics, MDPI, vol. 6(4), pages 1-21, September.
    20. Ke, Ginger Y. & Verma, Manish, 2021. "A framework to managing disruption risk in rail-truck intermodal transportation networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:6:p:1634-:d:214979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.