IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i5p1385-d211435.html
   My bibliography  Save this article

Identification of Urban Functional Areas Based on POI Data: A Case Study of the Guangzhou Economic and Technological Development Zone

Author

Listed:
  • Yunfeng Hu

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Yueqi Han

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Functional areas are the basic spatial units in which cities or development zones implement urban plans and provide functions. Internet map big data technology provides a new method for the identification and spatial analysis of functional areas. Based on the POI (point of interest) data from AMap (a map application of AutoNavi) from 2017, this paper proposes an urban functional areas recognition and analysis method based on the frequency density and the ratio of POI function types. It takes the Guangzhou Economic and Technological Development Zone as a case study to analyze the main function and spatial distribution characteristics of the detailed functional areas. The research shows the following: (1) The POI frequency density index and the function type ratio can effectively distinguish the functions of the grid units and analyze the spatial distribution characteristics of a complex functional area. (2) The single functional area is the most common area type in the Guangzhou Economic and Technological Development Zone. The largest proportion of all areas is allocated to traditional manufacturing industry functional areas, followed by high-tech enterprises, catering and entertainment, real estate, and education and health care, in descending order. The smallest proportion is allocated to finance and insurance functional areas. (3) The current layout of the functional areas in the Guangzhou Economic and Technological Development Zone conforms to the overall requirements and planning objectives of the central and local government. The layout and agglomeration of different blocks within the economic development zone are consistent with local industry’s target orientation and development history.

Suggested Citation

  • Yunfeng Hu & Yueqi Han, 2019. "Identification of Urban Functional Areas Based on POI Data: A Case Study of the Guangzhou Economic and Technological Development Zone," Sustainability, MDPI, vol. 11(5), pages 1-15, March.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1385-:d:211435
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/5/1385/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/5/1385/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kai Cao & Hui Guo & Ye Zhang, 2019. "Comparison of Approaches for Urban Functional Zones Classification Based on Multi-Source Geospatial Data: A Case Study in Yuzhong District, Chongqing, China," Sustainability, MDPI, vol. 11(3), pages 1-19, January.
    2. Wei Li & Desheng Xue & Xu Huang, 2018. "The Role of Manufacturing in Sustainable Economic Development: A Case of Guangzhou, China," Sustainability, MDPI, vol. 10(9), pages 1-17, August.
    3. Yu Zhao & Guoqin Zhang & Tao Lin & Xiaofang Liu & Jiakun Liu & Meixia Lin & Hong Ye & Lingjie Kong, 2018. "Towards Sustainable Urban Communities: A Composite Spatial Accessibility Assessment for Residential Suitability Based on Network Big Data," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    4. Carson J Q Farmer & A Stewart Fotheringham, 2011. "Network-Based Functional Regions," Environment and Planning A, , vol. 43(11), pages 2723-2741, November.
    5. Yu Liu & Xi Liu & Song Gao & Li Gong & Chaogui Kang & Ye Zhi & Guanghua Chi & Li Shi, 2015. "Social Sensing: A New Approach to Understanding Our Socioeconomic Environments," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 105(3), pages 512-530, May.
    6. Xin Cheng & Hua Shao & Yang Li & Chao Shen & Peipei Liang, 2019. "Urban Land Intensive Use Evaluation Study Based on Nighttime Light—A Case Study of the Yangtze River Economic Belt," Sustainability, MDPI, vol. 11(3), pages 1-21, January.
    7. Xiaorui Zhang & Qian Hua & Linya Zhang, 2016. "Development and Application of a Planning Support System for Regional Spatial Functional Zoning Based on GIS," Sustainability, MDPI, vol. 8(9), pages 1-17, September.
    8. Yaxiong Ma & Sucharita Gopal, 2018. "Geographically Weighted Regression Models in Estimating Median Home Prices in Towns of Massachusetts Based on an Urban Sustainability Framework," Sustainability, MDPI, vol. 10(4), pages 1-27, March.
    9. Liu, Xin & Jiao, Pengfei & Yuan, Ning & Wang, Wenjun, 2016. "Identification of multi-attribute functional urban areas under a perspective of community detection: A case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 827-836.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ting Liu & Gang Cheng & Jie Yang, 2023. "Multi-Scale Recursive Identification of Urban Functional Areas Based on Multi-Source Data," Sustainability, MDPI, vol. 15(18), pages 1-24, September.
    2. Li, Xianghua & Deng, Yue & Yuan, Xuesong & Wang, Zhen & Gao, Chao, 2022. "Data-driven behavioral analysis and applications: A case study in Changchun, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    3. Tianle Li & Xinqi Zheng & Chunxiao Zhang & Ruiguo Wang & Jiayu Liu, 2022. "Mining Spatial Correlation Patterns of the Urban Functional Areas in Urban Agglomeration: A Case Study of Four Typical Urban Agglomerations in China," Land, MDPI, vol. 11(6), pages 1-18, June.
    4. Feilong Hao & Ming Lu & Tingting Yu & Shijun Wang, 2024. "Identification and characterization of urban polycentric structure based on points of interest in Shenyang, China," Growth and Change, Wiley Blackwell, vol. 55(1), March.
    5. Tongwen Wang & Ya Li & Haidong Li & Shuaijun Chen & Hongkai Li & Yunxing Zhang, 2022. "Research on the Vitality Evaluation of Parks and Squares in Medium-Sized Chinese Cities from the Perspective of Urban Functional Areas," IJERPH, MDPI, vol. 19(22), pages 1-23, November.
    6. Yuting Liang & Yunfeng Hu, 2024. "Regional development assessment based on POIs and Geotree: a case study in Beijing-Tianjin-Hebei region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 18785-18809, July.
    7. Weifeng Li & Jiawei He & Qing Yu & Yujiao Chang & Peng Liu, 2021. "Using POI Data to Identify the Demand for Pedestrian Crossing Facilities at Mid-Block," Sustainability, MDPI, vol. 13(23), pages 1-13, November.
    8. Bo Liu & Desheng Xue & Yiming Tan, 2019. "Deciphering the Manufacturing Production Space in Global City-Regions of Developing Countries—a Case of Pearl River Delta, China," Sustainability, MDPI, vol. 11(23), pages 1-26, December.
    9. Anna Busłowska & Jacek Marcinkiewicz, 2023. "Social Cohesion of Functional Urban Areas (Example of Eastern Poland)," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 167(1), pages 451-473, June.
    10. Yani Lai & Zhen Lv & Chunmei Chen & Quan Liu, 2022. "Exploring Employment Spatial Structure Based on Mobile Phone Signaling Data: The Case of Shenzhen, China," Land, MDPI, vol. 11(7), pages 1-15, June.
    11. Pengcheng Lv & Xiaodong Li & Haoyu Zhang & Xiang Liu & Lingzhang Kong, 2022. "Research on the Spatial and Temporal Distribution of Logistics Enterprises in Xinjiang and the Influencing Factors Based on POI Data," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    12. Siyu Ma & Lin Yang & Mei-Po Kwan & Zejun Zuo & Haoyue Qian & Minghao Li, 2021. "Do Individuals’ Activity Structures Influence Their PM 2 . 5 Exposure Levels? Evidence from Human Trajectory Data in Wuhan City," IJERPH, MDPI, vol. 18(9), pages 1-27, April.
    13. Xueqi Wang & Zhichong Zou, 2021. "Open Data Based Urban For-Profit Music Venues Spatial Layout Pattern Discovery," Sustainability, MDPI, vol. 13(11), pages 1-22, June.
    14. Wang, Jiangbo & Yamamoto, Toshiyuki & Liu, Kai, 2021. "Spatial dependence and spillover effects in customized bus demand: Empirical evidence using spatial dynamic panel models," Transport Policy, Elsevier, vol. 105(C), pages 166-180.
    15. Yuewen Yang & Dongyan Wang & Zhuoran Yan & Shuwen Zhang, 2021. "Delineating Urban Functional Zones Using U-Net Deep Learning: Case Study of Kuancheng District, Changchun, China," Land, MDPI, vol. 10(11), pages 1-21, November.
    16. Wang, Jiangbo & Yamamoto, Toshiyuki & Liu, Kai, 2022. "Exploring the subscribing behavior of customized bus passengers: Active users versus inactive users," Journal of choice modelling, Elsevier, vol. 43(C).
    17. Beibei Yu & Zhonghui Wang & Haowei Mu & Li Sun & Fengning Hu, 2019. "Identification of Urban Functional Regions Based on Floating Car Track Data and POI Data," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    18. Tai Zhang & Bin Wang & Yisong Ge & Chengzhi Li, 2022. "Research on Green Space Service Space Based on Crowd Aggregation and Activity Characteristics under Big Data—Take Tacheng City as an Example," IJERPH, MDPI, vol. 19(22), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guowei Luo & Jiayuan Ye & Jinfeng Wang & Yi Wei, 2023. "Urban Functional Zone Classification Based on POI Data and Machine Learning," Sustainability, MDPI, vol. 15(5), pages 1-18, March.
    2. Liangliang Zhou & Yishao Shi & Xiangyang Cao, 2019. "Evaluation of Land Intensive Use in Shanghai Pilot Free Trade Zone," Land, MDPI, vol. 8(6), pages 1-16, May.
    3. Jordy Meekes & Wolter H. J. Hassink, 2023. "Endogenous local labour markets, regional aggregation and agglomeration economies," Regional Studies, Taylor & Francis Journals, vol. 57(1), pages 13-25, January.
    4. Helai Huang & Jialing Wu & Fang Liu & Yiwei Wang, 2020. "Measuring Accessibility Based on Improved Impedance and Attractive Functions Using Taxi Trajectory Data," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    5. Yuewen Yang & Dongyan Wang & Zhuoran Yan & Shuwen Zhang, 2021. "Delineating Urban Functional Zones Using U-Net Deep Learning: Case Study of Kuancheng District, Changchun, China," Land, MDPI, vol. 10(11), pages 1-21, November.
    6. Ashraf Abd El Karim & Mohsen M. Awawdeh, 2020. "Integrating GIS Accessibility and Location-Allocation Models with Multicriteria Decision Analysis for Evaluating Quality of Life in Buraidah City, KSA," Sustainability, MDPI, vol. 12(4), pages 1-28, February.
    7. Li, Xin & Xie, Qianqian & Jiang, Jiaojiao & Zhou, Yuan & Huang, Lucheng, 2019. "Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 687-705.
    8. Zolnik, Edmund, 2021. "Geographically weighted regression models of residential property transactions: Walkability and value uplift," Journal of Transport Geography, Elsevier, vol. 92(C).
    9. Chaogui Kang & Dongwan Fan & Hongzan Jiao, 2021. "Validating activity, time, and space diversity as essential components of urban vitality," Environment and Planning B, , vol. 48(5), pages 1180-1197, June.
    10. Xuewei Wang & Shuangli Ding & Weidong Cao & Dalong Fan & Bin Tang, 2020. "Research on Network Patterns and Influencing Factors of Population Flow and Migration in the Yangtze River Delta Urban Agglomeration, China," Sustainability, MDPI, vol. 12(17), pages 1-19, August.
    11. Yang, Xiping & Fang, Zhixiang & Xu, Yang & Yin, Ling & Li, Junyi & Lu, Shiwei, 2019. "Spatial heterogeneity in spatial interaction of human movements—Insights from large-scale mobile positioning data," Journal of Transport Geography, Elsevier, vol. 78(C), pages 29-40.
    12. Alice Barreca, 2022. "Architectural Quality and the Housing Market: Values of the Late Twentieth Century Built Heritage," Sustainability, MDPI, vol. 14(5), pages 1-24, February.
    13. Paulina Guerrero & Maja Steen Møller & Anton Stahl Olafsson & Bernhard Snizek, 2016. "Revealing Cultural Ecosystem Services through Instagram Images: The Potential of Social Media Volunteered Geographic Information for Urban Green Infrastructure Planning and Governance," Urban Planning, Cogitatio Press, vol. 1(2), pages 1-17.
    14. Werner Liebregts & Pourya Darnihamedani & Eric Postma & Martin Atzmueller, 2020. "The promise of social signal processing for research on decision-making in entrepreneurial contexts," Small Business Economics, Springer, vol. 55(3), pages 589-605, October.
    15. Qian Chen & Tingting Ye & Naizhuo Zhao & Mingjun Ding & Zutao Ouyang & Peng Jia & Wenze Yue & Xuchao Yang, 2021. "Mapping China’s regional economic activity by integrating points-of-interest and remote sensing data with random forest," Environment and Planning B, , vol. 48(7), pages 1876-1894, September.
    16. Amjad Ali & Marc Audi & Ismail Senturk & Yannick Roussel, 2022. "Do Sectoral Growth Promote CO2 Emissions in Pakistan? Time Series Analysis in Presence of Structural Break," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 410-425, March.
    17. Bidur Devkota & Hiroyuki Miyazaki & Apichon Witayangkurn & Sohee Minsun Kim, 2019. "Using Volunteered Geographic Information and Nighttime Light Remote Sensing Data to Identify Tourism Areas of Interest," Sustainability, MDPI, vol. 11(17), pages 1-29, August.
    18. Yunzi Yang & Yuanyuan Ma & Hongzan Jiao, 2021. "Exploring the Correlation between Block Vitality and Block Environment Based on Multisource Big Data: Taking Wuhan City as an Example," Land, MDPI, vol. 10(9), pages 1-23, September.
    19. Bogataj, David & Bogataj, Marija & Drobne, Samo, 2019. "Interactions between flows of human resources in functional regions and flows of inventories in dynamic processes of global supply chains," International Journal of Production Economics, Elsevier, vol. 209(C), pages 215-225.
    20. Wojciech Kisiała & Izabela Rącka, 2021. "Spatial and Statistical Analysis of Urban Poverty for Sustainable City Development," Sustainability, MDPI, vol. 13(2), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1385-:d:211435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.