IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i5p1295-d210175.html
   My bibliography  Save this article

Life Cycle Assessment Comparison of Two Refractory Brick Product Systems for Ladle Lining in Secondary Steelmaking

Author

Listed:
  • Francesco Boenzi

    (Department of Mechanics, Mathematics and Management, Politecnico di Bari, 70126 Bari, Italy)

  • Joaquín Ordieres-Meré

    (PMQ research Group, ETSII, Universidad Politécnica de Madrid, 28006 Madrid, Spain; Visiting professor at I3-CRG, École Polytechnique, Route de Saclay, 91128 Palaiseau, Paris, France)

  • Raffaello Iavagnilio

    (Department of Mechanics, Mathematics and Management, Politecnico di Bari, 70126 Bari, Italy)

Abstract

This paper aims to compare the environmental performance of two types of refractory bricks for the internal lining of ladles in secondary steelmaking, where the dissolved inclusions coming from the refractory material require fine control to obtain the target steel quality. In this context, magnesia-carbon-based refractories are largely utilized, thanks to the adequate durability of the ladle lining in terms of number of heats before re-lining, but the utilization of organic binders in the mixture (pitch, resins) arises ecological and human health concerns. Concurrently, research efforts in refractory material science look at improving the quality of steel by reducing the content of dissolved carbon due to the release from the bricks, thus focusing on different refractory materials and specifically on alumina-based materials. The European Commission funded the research project “LeanStory”, aiming to promote such new lines of refractories through the cooperation between industrial partners and scholars where different recipes are considered. In the present paper, two representative systems of the refractory types considered, magnesia-carbon and magnesia-alumina, are compared with a preliminary Life Cycle Assessment (LCA). Suppliers and transports for the two product systems have been taken into account, referring to one tonne of refractory material as the functional unit for comparison. Preliminary impact results (adopting the ReCiPe Midpoint–Hierarchist perspective methodology for calculating the impact indicators) show that the new solution performs largely better almost for each indicator. Further investigations are required in order to assess the ecological performance of the two systems, considering the effective consumption of bricks for the production of steel.

Suggested Citation

  • Francesco Boenzi & Joaquín Ordieres-Meré & Raffaello Iavagnilio, 2019. "Life Cycle Assessment Comparison of Two Refractory Brick Product Systems for Ladle Lining in Secondary Steelmaking," Sustainability, MDPI, vol. 11(5), pages 1-22, March.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1295-:d:210175
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/5/1295/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/5/1295/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aysun Özkan & Zerrin Günkaya & Gülden Tok & Levent Karacasulu & Melike Metesoy & Müfide Banar & Alpagut Kara, 2016. "Life Cycle Assessment and Life Cycle Cost Analysis of Magnesia Spinel Brick Production," Sustainability, MDPI, vol. 8(7), pages 1-13, July.
    2. Kaya, Sinem & Mançuhan, Ebru & Küçükada, Kurtul, 2009. "Modelling and optimization of the firing zone of a tunnel kiln to predict the optimal feed locations and mass fluxes of the fuel and secondary air," Applied Energy, Elsevier, vol. 86(3), pages 325-332, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viktoria Mannheim & Weronika Kruszelnicka, 2022. "Energy-Model and Life Cycle-Model for Grinding Processes of Limestone Products," Energies, MDPI, vol. 15(10), pages 1-20, May.
    2. Václav Kočí & Lenka Scheinherrová & Jiří Maděra & Martin Keppert & Zbigniew Suchorab & Grzegorz Łagód & Robert Černý, 2020. "Experimental and Computational Study of Thermal Processes in Red Clays Exposed to High Temperatures," Energies, MDPI, vol. 13(9), pages 1-15, May.
    3. Miguel Castro Oliveira & Muriel Iten & Pedro L. Cruz & Helena Monteiro, 2020. "Review on Energy Efficiency Progresses, Technologies and Strategies in the Ceramic Sector Focusing on Waste Heat Recovery," Energies, MDPI, vol. 13(22), pages 1-24, November.
    4. Sergey Fomenko & Sanat Tolendiuly & Ahmet Turan & Adil Akishev, 2022. "Production of Refractory Bricks through Combustion Synthesis from Metallurgical Wastes and the Thermo-Physical Properties of the Products," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    5. Muhammad Rauf Shaker & Mayurkumar Bhalala & Qayoum Kargar & Byungik Chang, 2020. "Evaluation of Alternative Home-Produced Concrete Strength with Economic Analysis," Sustainability, MDPI, vol. 12(17), pages 1-15, August.
    6. Milani, M. & Montorsi, L. & Venturelli, M. & Tiscar, J.M. & García-Ten, J., 2019. "A numerical approach for the combined analysis of the dynamic thermal behaviour of an entire ceramic roller kiln and the stress formation in the tiles," Energy, Elsevier, vol. 177(C), pages 543-553.
    7. Dong-Jun Yeom & Eun-Ji Na & Mi-Young Lee & Yoo-Jun Kim & Young Suk Kim & Chung-Suk Cho, 2017. "Performance Evaluation and Life Cycle Cost Analysis Model of a Gondola-Type Exterior Wall Painting Robot," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    8. Bahadori, Alireza & Vuthaluru, Hari B., 2010. "Novel predictive tools for design of radiant and convective sections of direct fired heaters," Applied Energy, Elsevier, vol. 87(7), pages 2194-2202, July.
    9. Jan Pešta & Tereza Pavlů & Kristina Fořtová & Vladimír Kočí, 2020. "Sustainable Masonry Made from Recycled Aggregates: LCA Case Study," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    10. Apichonnabutr, W. & Tiwary, A., 2018. "Trade-offs between economic and environmental performance of an autonomous hybrid energy system using micro hydro," Applied Energy, Elsevier, vol. 226(C), pages 891-904.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:5:p:1295-:d:210175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.