IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i3p839-d203858.html
   My bibliography  Save this article

Sustainability Assessment of Constructive Solutions for Urban Spain: A Multi-Objective Combinatorial Optimization Problem

Author

Listed:
  • Simón Martínez

    (Department of Construction and Manufacturing Engineering, Escuela Técnica Superior Ingenieros Industriales, Universidad Nacional Educación a Distancia, 28015 Madrid, Spain)

  • Cristina González

    (Department of Construction and Manufacturing Engineering, Escuela Técnica Superior Ingenieros Industriales, Universidad Nacional Educación a Distancia, 28015 Madrid, Spain)

  • Antonio Hospitaler

    (Concrete Science and Technology Institute, ICITECH, Universitat Politècnica de València, 46022 València, Spain)

  • Vicente Albero

    (Concrete Science and Technology Institute, ICITECH, Universitat Politècnica de València, 46022 València, Spain)

Abstract

Industrial areas are set up on plots of roads and associated infrastructure. These use materials and machinery that have environmental impacts, and thus require constructive solutions throughout their lifecycles. In turn, these solutions and their components cause environmental impacts that can be measured by sustainability indicators. The concept of sustainability is closely tied to sustainable development, which is defined as “development that meets the needs of the present, without compromising the ability of future generations to meet their own needs”. The large number of possible and available solutions means that identifying the best one for a given road section must employ a set of heuristic techniques, which conceptualize the issue as a combinatorial optimization problem that is purely discrete and non-differential. The system chosen can be based on a genetic algorithm method that differentiates individuals based on three sustainability indicators: CO 2 emissions, embedded energy (also known as embodied energy, defined as the energy expended to manufacture a product), and economic cost. In this paper, we supplement traditional cost analyses using a three-objective multi-objective genetic algorithm that considers the aforementioned criteria, thus addressing sustainability in aggregate planning. The procedure is applied to three objective functions—CO 2 emissions, economic cost and embedded energy—for each possible solution. We used the non-dominated sorting genetic algorithm (NSGA-II) to implement multi-objective optimization in MATLAB. Additional results for a random walk and multi-objective search algorithm are shown. This study involved 26 design variables, with different ranks of variation, and the application of the algorithm generates results for the defined Pareto fronts. Our method shows that the optimal approach effectively solves a real-world multi-objective project planning problem, as our solution is one of the Pareto-optimal solutions generated by the NSGA-II.

Suggested Citation

  • Simón Martínez & Cristina González & Antonio Hospitaler & Vicente Albero, 2019. "Sustainability Assessment of Constructive Solutions for Urban Spain: A Multi-Objective Combinatorial Optimization Problem," Sustainability, MDPI, vol. 11(3), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:3:p:839-:d:203858
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/3/839/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/3/839/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Groot, Rudolf S. & Wilson, Matthew A. & Boumans, Roelof M. J., 2002. "A typology for the classification, description and valuation of ecosystem functions, goods and services," Ecological Economics, Elsevier, vol. 41(3), pages 393-408, June.
    2. Elisa Conticelli & Simona Tondelli, 2014. "Eco-Industrial Parks and Sustainable Spatial Planning: A Possible Contradiction?," Administrative Sciences, MDPI, vol. 4(3), pages 1-19, August.
    3. Tudor, Terry & Adam, Emma & Bates, Margaret, 2007. "Drivers and limitations for the successful development and functioning of EIPs (eco-industrial parks): A literature review," Ecological Economics, Elsevier, vol. 61(2-3), pages 199-207, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pilar Mercader-Moyano & Jesús Roldán-Porras, 2020. "Evaluating Environmental Impact in Foundations and Structures through Disaggregated Models: Towards the Decarbonisation of the Construction Sector," Sustainability, MDPI, vol. 12(12), pages 1-30, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisa Conticelli & Simona Tondelli, 2014. "Eco-Industrial Parks and Sustainable Spatial Planning: A Possible Contradiction?," Administrative Sciences, MDPI, vol. 4(3), pages 1-19, August.
    2. Cornelis Leeuwen & Jos Frijns & Annemarie Wezel & Frans Ven, 2012. "City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2177-2197, June.
    3. Stefan Liehr & Julia Röhrig & Marion Mehring & Thomas Kluge, 2017. "How the Social-Ecological Systems Concept Can Guide Transdisciplinary Research and Implementation: Addressing Water Challenges in Central Northern Namibia," Sustainability, MDPI, vol. 9(7), pages 1-19, June.
    4. Mohajan, Haradhan, 2021. "Cradle to Cradle is a Sustainable Economic Policy for the Better Future," MPRA Paper 111334, University Library of Munich, Germany, revised 10 Oct 2021.
    5. Henrich Grežo & Matej Močko & Martin Izsóff & Gréta Vrbičanová & František Petrovič & Jozef Straňák & Zlatica Muchová & Martina Slámová & Branislav Olah & Ivo Machar, 2020. "Flood Risk Assessment for the Long-Term Strategic Planning Considering the Placement of Industrial Parks in Slovakia," Sustainability, MDPI, vol. 12(10), pages 1-20, May.
    6. Yanzi Wang & Chunming Wu & Yongfeng Gong & Zhen Zhu, 2021. "Can Adaptive Governance Promote Coupling Social-Ecological Systems? Evidence from the Vulnerable Ecological Region of Northwestern China," Sustainability, MDPI, vol. 13(20), pages 1-19, October.
    7. Breffle, William S. & Muralidharan, Daya & Donovan, Richard P. & Liu, Fangming & Mukherjee, Amlan & Jin, Yongliang, 2013. "Socioeconomic evaluation of the impact of natural resource stressors on human-use services in the Great Lakes environment: A Lake Michigan case study," Resources Policy, Elsevier, vol. 38(2), pages 152-161.
    8. Comino, E. & Ferretti, V., 2016. "Indicators-based spatial SWOT analysis: supporting the strategic planning and management of complex territorial systems," LSE Research Online Documents on Economics 64142, London School of Economics and Political Science, LSE Library.
    9. Samira F. Oliveira & Rachel B. Prado & Elaine C. C. Fidalgo & Ana P. D. Turetta & Joyce M. G. Monteiro & Bernadete da C. C. G. Pedreira & Gerson J. Y. Antonio & Renato L. de Assis & Sandro R. A. Oitav, 2024. "Climate Change and Ecosystem Services: A Participatory Approach in a Brazilian Mountainous Region," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 17(5), pages 1-1, September.
    10. Jansson, Åsa, 2013. "Reaching for a sustainable, resilient urban future using the lens of ecosystem services," Ecological Economics, Elsevier, vol. 86(C), pages 285-291.
    11. P. Hlaváčková & D. Šafařík, 2016. "Quantification of the utility value of the recreational function of forests from the aspect of valuation practice," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 62(8), pages 345-356.
    12. Bolaños-Valencia, Ingrid & Villegas-Palacio, Clara & López-Gómez, Connie Paola & Berrouet, Lina & Ruiz, Aura, 2019. "Social perception of risk in socio-ecological systems. A qualitative and quantitative analysis," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    13. Bordt, Michael, 2018. "Discourses in Ecosystem Accounting: A Survey of the Expert Community," Ecological Economics, Elsevier, vol. 144(C), pages 82-99.
    14. Hackbart, Vivian C.S. & de Lima, Guilherme T.N.P. & dos Santos, Rozely F., 2017. "Theory and practice of water ecosystem services valuation: Where are we going?," Ecosystem Services, Elsevier, vol. 23(C), pages 218-227.
    15. Meixler, Marcia S., 2017. "Assessment of Hurricane Sandy damage and resulting loss in ecosystem services in a coastal-urban setting," Ecosystem Services, Elsevier, vol. 24(C), pages 28-46.
    16. Juliana Hurtado Rassi, 2020. "Gestión conjunta de ecosistemas transfronterizos: la importancia del trabajo articulado entre los Estados para la conservación de los recursos naturales. Análisis del caso particular de la “Reserva de," Books, Universidad Externado de Colombia, Facultad de Derecho, number 1241, October.
    17. Alessio D’Auria & Pasquale De Toro & Nicola Fierro & Elisa Montone, 2018. "Integration between GIS and Multi-Criteria Analysis for Ecosystem Services Assessment: A Methodological Proposal for the National Park of Cilento, Vallo di Diano and Alburni (Italy)," Sustainability, MDPI, vol. 10(9), pages 1-25, September.
    18. Rode, Julian & Le Menestrel, Marc & Cornelissen, Gert, 2017. "Ecosystem Service Arguments Enhance Public Support for Environmental Protection - But Beware of the Numbers!," Ecological Economics, Elsevier, vol. 141(C), pages 213-221.
    19. Johann Audrain & Mateo Cordier & Sylvie Faucheux & Martin O’Connor, 2013. "Écologie territoriale et indicateurs pour un développement durable de la métropole parisienne," Revue d'économie régionale et urbaine, Armand Colin, vol. 0(3), pages 523-559.
    20. Stenger, Anne & Harou, Patrice & Navrud, Ståle, 2009. "Valuing environmental goods and services derived from the forests," Journal of Forest Economics, Elsevier, vol. 15(1-2), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:3:p:839-:d:203858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.