IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i21p5950-d280356.html
   My bibliography  Save this article

A Random Forest Model for Travel Mode Identification Based on Mobile Phone Signaling Data

Author

Listed:
  • Zhenbo Lu

    (Intelligent Transportation System Research Center, Southeast University, Nanjing 210000, China)

  • Zhen Long

    (Intelligent Transportation System Research Center, Southeast University, Nanjing 210000, China)

  • Jingxin Xia

    (Intelligent Transportation System Research Center, Southeast University, Nanjing 210000, China)

  • Chengchuan An

    (Intelligent Transportation System Research Center, Southeast University, Nanjing 210000, China)

Abstract

Identifying and detecting the travel mode and pattern of individual travelers is an important problem in transportation planning and policy making. Mobile-phone Signaling Data (MSD) have numerous advantages, including wide coverage and low acquisition cost, data stability and reliability, and strong real-time performance. However, due to their noisy and temporally irregular nature, extracting mobility information such as transport modes from these data is particularly challenging. This paper establishes a travel mode identification model based on the MSD combined with residents’ travel survey data, Geographic Information System (GIS) data, and navigation data. Using the data obtained from Kunshan, China in 2017, enriched with variables on the travel mode identification, the model achieved a high accuracy of 90%. The accuracy is satisfactory for all of the transport modes other than buses. Furthermore, among the explanatory variables such as the built environment factors (e.g., the coverage rate of a bus stop) are in general more significant, in contrast with other attributes. This indicates that the land use functions are more influential on the travel mode selection as well as the level of travel demand.

Suggested Citation

  • Zhenbo Lu & Zhen Long & Jingxin Xia & Chengchuan An, 2019. "A Random Forest Model for Travel Mode Identification Based on Mobile Phone Signaling Data," Sustainability, MDPI, vol. 11(21), pages 1-21, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:5950-:d:280356
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/21/5950/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/21/5950/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Shafique & Eiji Hato, 2015. "Use of acceleration data for transportation mode prediction," Transportation, Springer, vol. 42(1), pages 163-188, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaofeng Lou & Changhai Peng, 2022. "Planning of a comprehensive transportation system in Ma’anshan based on mobile phone signaling data," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9380-9406, July.
    2. Xiaoyu Cai & Yihan Zhang & Xin Zhang & Bo Peng, 2023. "Travel Characteristics Identification Method for Expressway Passenger Cars Based on Electronic Toll Collection Data," Sustainability, MDPI, vol. 15(15), pages 1-28, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanjun Qin & Haiyong Luo & Fang Zhao & Zhongliang Zhao & Mengling Jiang, 2018. "A traffic pattern detection algorithm based on multimodal sensing," International Journal of Distributed Sensor Networks, , vol. 14(10), pages 15501477188, October.
    2. Mercedes Ayuso & Montserrat Guillen & Jens Perch Nielsen, 2019. "Improving automobile insurance ratemaking using telematics: incorporating mileage and driver behaviour data," Transportation, Springer, vol. 46(3), pages 735-752, June.
    3. Thomas Feilhauer & Florian Braun & Katja Faller & David Hutter & Daniel Mathis & Johannes Neubauer & Jasmin Pogatschneg & Michelle Weber, 2021. "Mobility Choices—An Instrument for Precise Automatized Travel Behavior Detection & Analysis," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    4. Montserrat Guillen & Ana M. Pérez-Marín & Mercedes Ayuso & Jens Perch Nielsen, 2018. "“Exposure to risk increases the excess of zero accident claims frequency in automobile insurance”," IREA Working Papers 201810, University of Barcelona, Research Institute of Applied Economics, revised May 2018.
    5. Montserrat Guillen & Jens Perch Nielsen & Mercedes Ayuso & Ana M. Pérez‐Marín, 2019. "The Use of Telematics Devices to Improve Automobile Insurance Rates," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 662-672, March.
    6. Weijia (Vivian) Li & Kara M. Kockelman, 2022. "How does machine learning compare to conventional econometrics for transport data sets? A test of ML versus MLE," Growth and Change, Wiley Blackwell, vol. 53(1), pages 342-376, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:5950-:d:280356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.