IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i18p4973-d266365.html
   My bibliography  Save this article

Effectiveness of Ring Roads in Reducing Traffic Congestion in Cities for Long Run: Big Almaty Ring Road Case Study

Author

Listed:
  • Assel Nugmanova

    (Department of Civil and Environmental Engineering, Nazarbayev University, Nur-Sultan 010000, Kazakhstan)

  • Wulf-Holger Arndt

    (Centre for Technology and Society, Technische Universität Berlin, 10623 Berlin, Germany)

  • Md Aslam Hossain

    (Department of Civil and Environmental Engineering, Nazarbayev University, Nur-Sultan 010000, Kazakhstan)

  • Jong Ryeol Kim

    (Department of Civil and Environmental Engineering, Nazarbayev University, Nur-Sultan 010000, Kazakhstan)

Abstract

It is common to increase road capacity by constructing ring roads to reduce traffic congestion in city areas, although this is often found to be ineffective in the long run. Accordingly, this study investigates various traffic congestion management approaches and their effectiveness in major cities, and explores an identical transport problem in Almaty, Kazakhstan: The Big Almaty Ring Road (BAKAD). Several case examples from the existing literature are examined in which various approaches were taken for managing traffic congestion problems, and these approaches are classified into three concepts. The first concept comprises heavy engineering measures such as ring road development, new road construction, expansion of existing roads, etc. Such measures can initially reduce traffic congestion, but often become ineffective with time due to the generation of induced traffic. Many cities have taken Push and Pull measures that ensure more efficient use of existing capacity and have initiated environmentally friendly alternative transportation modes such as decreased car usage; promotion of public transport, biking and walking; minimization of the necessity of people’s movement by changing urban land use patterns; and so on. These approaches have been found to be effective in providing sustainable transportation solutions and are classified as concept 2. Nevertheless, Push and Pull measures might not be enough for managing traffic congestion, and it might be necessary to increase the road capacity through heavy engineering measures, especially if the city experiences heavy transit traffic. This combined approach is categorized as concept 3. Consequently, the BAKAD project is examined under the umbrella of three concepts, and recommendations are provided based on the findings from the experience of different cities and interviews with experts from Almaty city. Both the results and recommendations developed are relevant for this specific case only, and are not necessarily transferable.

Suggested Citation

  • Assel Nugmanova & Wulf-Holger Arndt & Md Aslam Hossain & Jong Ryeol Kim, 2019. "Effectiveness of Ring Roads in Reducing Traffic Congestion in Cities for Long Run: Big Almaty Ring Road Case Study," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:4973-:d:266365
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/18/4973/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/18/4973/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rotaris, Lucia & Danielis, Romeo & Marcucci, Edoardo & Massiani, Jérôme, 2010. "The urban road pricing scheme to curb pollution in Milan, Italy: Description, impacts and preliminary cost-benefit analysis assessment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 359-375, June.
    2. Hymel, Kent, 2019. "If you build it, they will drive: Measuring induced demand for vehicle travel in urban areas," Transport Policy, Elsevier, vol. 76(C), pages 57-66.
    3. Börjesson, Maria & Kristoffersson, Ida, 2015. "The Gothenburg congestion charge. Effects, design and politics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 134-146.
    4. ALONSO RAPOSO Maria & CIUFFO Biagio & ARDENTE Fulvio & AURAMBOUT Jean Philippe & Gianmarco BALDINI & Robert BRAUN & Panayotis CHRISTIDIS & Aris Christodoulou & Amandine DUBOZ & Sofia FELICI & Jaime FE, 2019. "The future of road transport," JRC Research Reports JRC116644, Joint Research Centre.
    5. Piet Rietveld & Frank Bruinsma, 1998. "Infrastructure and Urban Development: the Amsterdam Orbital Motorway," Advances in Spatial Science, in: Is Transport Infrastructure Effective?, chapter 9, pages 214-242, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Batara Surya & Hadijah Hadijah & Seri Suriani & Baharuddin Baharuddin & A. Tenri Fitriyah & Firman Menne & Emil Salim Rasyidi, 2020. "Spatial Transformation of a New City in 2006–2020: Perspectives on the Spatial Dynamics, Environmental Quality Degradation, and Socio—Economic Sustainability of Local Communities in Makassar City, Ind," Land, MDPI, vol. 9(9), pages 1-50, September.
    2. Navin Ranjan & Sovit Bhandari & Pervez Khan & Youn-Sik Hong & Hoon Kim, 2021. "Large-Scale Road Network Congestion Pattern Analysis and Prediction Using Deep Convolutional Autoencoder," Sustainability, MDPI, vol. 13(9), pages 1-26, May.
    3. Batara Surya & Agus Salim & Hernita Hernita & Seri Suriani & Firman Menne & Emil Salim Rasyidi, 2021. "Land Use Change, Urban Agglomeration, and Urban Sprawl: A Sustainable Development Perspective of Makassar City, Indonesia," Land, MDPI, vol. 10(6), pages 1-31, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amit Agarwal & Benjamin Kickhöfer, 2018. "The correlation of externalities in marginal cost pricing: lessons learned from a real-world case study," Transportation, Springer, vol. 45(3), pages 849-873, May.
    2. Fageda, Xavier & Flores-Fillol, Ricardo & Theilen, Bernd, 2022. "Price versus quantity measures to deal with pollution and congestion in urban areas: A political economy approach," Journal of Environmental Economics and Management, Elsevier, vol. 115(C).
    3. Bernardo, Valeria & Fageda, Xavier & Flores-Fillol, Ricardo, 2021. "Pollution and congestion in urban areas: The effects of low emission zones," Economics of Transportation, Elsevier, vol. 26.
    4. Juan Pedro Muñoz Miguel & Ana Elizabeth García Sipols & Clara Simón de Blas & Francisca Anguita Rodríguez, 2021. "A Model to Evaluate the Effect of Urban Road Pricing on Traffic Speed and Congestion in Madrid City Center and Its Surrounding," Sustainability, MDPI, vol. 13(15), pages 1-23, July.
    5. Andersson, David & Nässén, Jonas, 2016. "The Gothenburg congestion charge scheme: A pre–post analysis of commuting behavior and travel satisfaction," Journal of Transport Geography, Elsevier, vol. 52(C), pages 82-89.
    6. Lehe, Lewis J. & Devunuri, Saipraneeth, 2022. "Large Elasticity at Introduction," Research in Transportation Economics, Elsevier, vol. 95(C).
    7. Miquel-Àngel Garcia-López & Ilias Pasidis & Elisabet Viladecans-Marsal, 2022. "Congestion in highways when tolls and railroads matter: evidence from European cities [The congestion relief benefit of public transit: evidence from Rome]," Journal of Economic Geography, Oxford University Press, vol. 22(5), pages 931-960.
    8. Andrea Baranzini & Stefano Carattini & Linda Tesauro, 2021. "Designing Effective and Acceptable Road Pricing Schemes: Evidence from the Geneva Congestion Charge," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(3), pages 417-482, July.
    9. Russo, Antonio & Adler, Martin W. & Liberini, Federica & van Ommeren, Jos N., 2021. "Welfare losses of road congestion: Evidence from Rome," Regional Science and Urban Economics, Elsevier, vol. 89(C).
    10. Eliasson, Jonas, 2016. "Is congestion pricing fair? Consumer and citizen perspectives on equity effects," Transport Policy, Elsevier, vol. 52(C), pages 1-15.
    11. Lana Krehic, 2022. "How do increases in electric vehicle use affect urban toll ring prices?," Public Choice, Springer, vol. 193(3), pages 187-209, December.
    12. Frondel Manuel, 2019. "Straßennutzungsgebühren: Eine Lösung zur Vermeidung von Staus?," Perspektiven der Wirtschaftspolitik, De Gruyter, vol. 20(3), pages 218-225, September.
    13. Rødseth, Kenneth Løvold & Wangsness, Paal Brevik & Alexander Gregersen, Fredrik, 2024. "Panel data analysis of drivers under an evolving cordon tolling system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    14. Sotiris Vardoulakis & Rachel Kettle & Paul Cosford & Paul Lincoln & Stephen Holgate & Jonathan Grigg & Frank Kelly & David Pencheon, 2018. "Local action on outdoor air pollution to improve public health," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 63(5), pages 557-565, June.
    15. Eliasson, Jonas, 2017. "Congestion pricing," MPRA Paper 88224, University Library of Munich, Germany.
    16. De Borger, Bruno & Russo, Antonio, 2018. "The political economy of cordon tolls," Journal of Urban Economics, Elsevier, vol. 105(C), pages 133-148.
    17. Behrends, Sönke, 2017. "Burden or opportunity for modal shift? – Embracing the urban dimension of intermodal road-rail transport," Transport Policy, Elsevier, vol. 59(C), pages 10-16.
    18. Mariano Gallo & Mario Marinelli, 2020. "Sustainable Mobility: A Review of Possible Actions and Policies," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    19. Ahmadi Azari, Kian & Arintono, Sulistyo & Hamid, Hussain & Rahmat, Riza Atiq O.K., 2013. "Modelling demand under parking and cordon pricing policy," Transport Policy, Elsevier, vol. 25(C), pages 1-9.
    20. Jens West & Maria Börjesson, 2020. "The Gothenburg congestion charges: cost–benefit analysis and distribution effects," Transportation, Springer, vol. 47(1), pages 145-174, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:18:p:4973-:d:266365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.