IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i16p4371-d257067.html
   My bibliography  Save this article

Industry 5.0—A Human-Centric Solution

Author

Listed:
  • Saeid Nahavandi

    (Institute for Intelligent Systems Research and Innovation, Deakin University, Waurn Ponds 3216, Australia)

Abstract

Staying at the top is getting tougher and more challenging due to the fast-growing and changing digital technologies and AI-based solutions. The world of technology, mass customization, and advanced manufacturing is experiencing a rapid transformation. Robots are becoming even more important as they can now be coupled with the human mind by means of brain–machine interface and advances in artificial intelligence. A strong necessity to increase productivity while not removing human workers from the manufacturing industry is imposing punishing challenges on the global economy. To counter these challenges, this article introduces the concept of Industry 5.0, where robots are intertwined with the human brain and work as collaborator instead of competitor. This article also outlines a number of key features and concerns that every manufacturer may have about Industry 5.0. In addition, it presents several developments achieved by researchers for use in Industry 5.0 applications and environments. Finally, the impact of Industry 5.0 on the manufacturing industry and overall economy is discussed from an economic and productivity point of view, where it is argued that Industry 5.0 will create more jobs than it will take away.

Suggested Citation

  • Saeid Nahavandi, 2019. "Industry 5.0—A Human-Centric Solution," Sustainability, MDPI, vol. 11(16), pages 1-13, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:16:p:4371-:d:257067
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/16/4371/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/16/4371/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Serena H. & Jakeman, Anthony J. & Norton, John P., 2008. "Artificial Intelligence techniques: An introduction to their use for modelling environmental systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 379-400.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karmaker, Chitra Lekha & Bari, A.B.M. Mainul & Anam, Md. Zahidul & Ahmed, Tazim & Ali, Syed Mithun & de Jesus Pacheco, Diego Augusto & Moktadir, Md. Abdul, 2023. "Industry 5.0 challenges for post-pandemic supply chain sustainability in an emerging economy," International Journal of Production Economics, Elsevier, vol. 258(C).
    2. Montserrat Jiménez-Partearroyo & Ana Medina-López & David Juárez-Varón, 2024. "Towards industry 5.0: evolving the product-process matrix in the new paradigm," The Journal of Technology Transfer, Springer, vol. 49(4), pages 1496-1531, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vlontzos, G. & Pardalos, P.M., 2017. "Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 155-162.
    2. Christian Janiesch & Patrick Zschech & Kai Heinrich, 2021. "Machine learning and deep learning," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 685-695, September.
    3. Gong, Jian-zhou & Liu, Yan-sui & Xia, Bei-cheng & Zhao, Guan-wei, 2009. "Urban ecological security assessment and forecasting, based on a cellular automata model: A case study of Guangzhou, China," Ecological Modelling, Elsevier, vol. 220(24), pages 3612-3620.
    4. Bhattacharya, Sourabh & Govindan, Kannan & Ghosh Dastidar, Surajit & Sharma, Preeti, 2024. "Applications of artificial intelligence in closed-loop supply chains: Systematic literature review and future research agenda," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    5. Le Cam, M. & Daoud, A. & Zmeureanu, R., 2016. "Forecasting electric demand of supply fan using data mining techniques," Energy, Elsevier, vol. 101(C), pages 541-557.
    6. Honglu Zhu & Xu Li & Qiao Sun & Ling Nie & Jianxi Yao & Gang Zhao, 2015. "A Power Prediction Method for Photovoltaic Power Plant Based on Wavelet Decomposition and Artificial Neural Networks," Energies, MDPI, vol. 9(1), pages 1-15, December.
    7. Bo Gao & Chunsheng Wang & Yukun Hu & C. K. Tan & Paul Alun Roach & Liz Varga, 2018. "Function Value-Based Multi-Objective Optimisation of Reheating Furnace Operations Using Hooke-Jeeves Algorithm," Energies, MDPI, vol. 11(9), pages 1-18, September.
    8. Fernando Ramos-Quintana & Efraín Tovar-Sánchez & Hugo Saldarriaga-Noreña & Héctor Sotelo-Nava & Juan Paulo Sánchez-Hernández & María-Luisa Castrejón-Godínez, 2019. "A CBR–AHP Hybrid Method to Support the Decision-Making Process in the Selection of Environmental Management Actions," Sustainability, MDPI, vol. 11(20), pages 1-30, October.
    9. Azadeh, A. & Faiz, Z.S. & Asadzadeh, S.M. & Tavakkoli-Moghaddam, R., 2011. "An integrated artificial neural network-computer simulation for optimization of complex tandem queue systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 666-678.
    10. Toorajipour, Reza & Sohrabpour, Vahid & Nazarpour, Ali & Oghazi, Pejvak & Fischl, Maria, 2021. "Artificial intelligence in supply chain management: A systematic literature review," Journal of Business Research, Elsevier, vol. 122(C), pages 502-517.
    11. T. Olivia Muslim & Ali Najah Ahmed & M. A. Malek & Haitham Abdulmohsin Afan & Rusul Khaleel Ibrahim & Amr El-Shafie & Michelle Sapitang & Mohsen Sherif & Ahmed Sefelnasr & Ahmed El-Shafie, 2020. "Investigating the Influence of Meteorological Parameters on the Accuracy of Sea-Level Prediction Models in Sabah, Malaysia," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    12. Ieva Meidute-Kavaliauskiene & Milad Alizadeh Jabehdar & Vida Davidavičienė & Mohammad Ali Ghorbani & Saad Sh. Sammen, 2021. "A Simple Way to Increase the Prediction Accuracy of Hydrological Processes Using an Artificial Intelligence Model," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    13. Alberto Dolara & Francesco Grimaccia & Sonia Leva & Marco Mussetta & Emanuele Ogliari, 2015. "A Physical Hybrid Artificial Neural Network for Short Term Forecasting of PV Plant Power Output," Energies, MDPI, vol. 8(2), pages 1-16, February.
    14. Ogliari, Emanuele & Dolara, Alberto & Manzolini, Giampaolo & Leva, Sonia, 2017. "Physical and hybrid methods comparison for the day ahead PV output power forecast," Renewable Energy, Elsevier, vol. 113(C), pages 11-21.
    15. Nun Pitalúa-Díaz & Fernando Arellano-Valmaña & Jose A. Ruz-Hernandez & Yasuhiro Matsumoto & Hussain Alazki & Enrique J. Herrera-López & Jesús Fernando Hinojosa-Palafox & A. García-Juárez & Ricardo Art, 2019. "An ANFIS-Based Modeling Comparison Study for Photovoltaic Power at Different Geographical Places in Mexico," Energies, MDPI, vol. 12(14), pages 1-16, July.
    16. Alsaleh, Nael & Farooq, Bilal, 2021. "Interpretable data-driven demand modelling for on-demand transit services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 1-22.
    17. Pournader, Mehrdokht & Ghaderi, Hadi & Hassanzadegan, Amir & Fahimnia, Behnam, 2021. "Artificial intelligence applications in supply chain management," International Journal of Production Economics, Elsevier, vol. 241(C).
    18. Leva, S. & Dolara, A. & Grimaccia, F. & Mussetta, M. & Ogliari, E., 2017. "Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 131(C), pages 88-100.
    19. Morando, S. & Jemei, S. & Hissel, D. & Gouriveau, R. & Zerhouni, N., 2017. "ANOVA method applied to proton exchange membrane fuel cell ageing forecasting using an echo state network," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 131(C), pages 283-294.
    20. Matana, Gleison & Simon, Alexandre & Filho, Moacir Godinho & Helleno, André, 2020. "Method to assess the adherence of internal logistics equipment to the concept of CPS for industry 4.0," International Journal of Production Economics, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:16:p:4371-:d:257067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.