IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i15p4096-d252738.html
   My bibliography  Save this article

Landscape Performance for Coordinated Development of Rural Communities & Small-Towns Based on “Ecological Priority and All-Area Integrated Development”: Six Case Studies in East China’s Zhejiang Province

Author

Listed:
  • Tiezheng Zhao

    (School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 200234, China)

  • Yang Zhao

    (School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 200234, China)

  • Ming-Han Li

    (School of Planning, Design and Construction, Michigan State University, East Lansing, Michigan, MI 48824, USA)

Abstract

Over the last decade, the Chinese government has focused on addressing development challenges in rural areas. The “Ecological Priority and All-Area Integrated Development” concept was thus developed, and it was found to be crucial for rural areas in Eastern Zhejiang Province. A new comprehensive evaluation system was composed by comparing and synthesizing existing Chinese assessment criteria, and landscape performance metrics developed by the Landscape Architecture Foundation. Analytic Hierarchy Process (AHP) and Fuzzy Comprehensive Evaluation Method (FCE) were used to conduct post-development evaluation on six cases using the new evaluation system. The results of four cases show that ecology should be considered a high priority when dealing with rural community and small town developments. The other two cases emphasizing infrastructure development verified that “coordinating the development of rural communities and small town area” is crucial for building sustainable and livable rural communities, and avoiding redundancy and inefficiency. The newly developed comprehensive evaluation system integrates existing systems with a broader vision and is more holistic in its objectives for the region. The development-led intervention (based on landscape performance evaluation) is conducive to the implementation of a more scientific and comprehensive development model, with predictable performance.

Suggested Citation

  • Tiezheng Zhao & Yang Zhao & Ming-Han Li, 2019. "Landscape Performance for Coordinated Development of Rural Communities & Small-Towns Based on “Ecological Priority and All-Area Integrated Development”: Six Case Studies in East China’s Zhejiang Provi," Sustainability, MDPI, vol. 11(15), pages 1-23, July.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:15:p:4096-:d:252738
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/15/4096/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/15/4096/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhen Wang & Bo Yang & Shujuan Li & Chris Binder, 2016. "Economic Benefits: Metrics and Methods for Landscape Performance Assessment," Sustainability, MDPI, vol. 8(5), pages 1-12, April.
    2. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lan Shen & Yikang Zhang & Minfeng Yao & Siren Lan, 2022. "Combination Weighting Integrated with TOPSIS for Landscape Performance Evaluation: A Case Study of Microlandscape from Rural Areas in Southeast China," Sustainability, MDPI, vol. 14(15), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    2. Jochen Wulf, 2020. "Development of an AHP hierarchy for managing omnichannel capabilities: a design science research approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 39-68, April.
    3. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    4. D’Inverno, Giovanna & Carosi, Laura & Romano, Giulia & Guerrini, Andrea, 2018. "Water pollution in wastewater treatment plants: An efficiency analysis with undesirable output," European Journal of Operational Research, Elsevier, vol. 269(1), pages 24-34.
    5. Nermin Kişi, 2019. "A Strategic Approach to Sustainable Tourism Development Using the A’WOT Hybrid Method: A Case Study of Zonguldak, Turkey," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    6. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    7. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    8. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    9. Abareshi, Maryam & Zaferanieh, Mehdi, 2019. "A bi-level capacitated P-median facility location problem with the most likely allocation solution," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 1-20.
    10. Datu Buyung Agusdinata & Wenjuan Liu & Sinta Sulistyo & Philippe LeBillon & Je'anne Wegner, 2023. "Evaluating sustainability impacts of critical mineral extractions: Integration of life cycle sustainability assessment and SDGs frameworks," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 746-759, June.
    11. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    12. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    13. Kokaraki, Nikoleta & Hopfe, Christina J. & Robinson, Elaine & Nikolaidou, Elli, 2019. "Testing the reliability of deterministic multi-criteria decision-making methods using building performance simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 991-1007.
    14. Hossein Yousefi & Saheb Ghanbari Motlagh & Mohammad Montazeri, 2022. "Multi-Criteria Decision-Making System for Wind Farm Site-Selection Using Geographic Information System (GIS): Case Study of Semnan Province, Iran," Sustainability, MDPI, vol. 14(13), pages 1-27, June.
    15. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    16. Kadir Kaan GÖNCÜ & Onur ÇETIN, 2022. "Evaluation Of Location Selection Criteria For Coordination Management Centers And Logistic Support Units In Disaster Areas With Ahp Method," Prizren Social Science Journal, SHIKS, vol. 6(2), pages 15-23, August.
    17. Tommaso Ortalli & Andrea Di Martino & Michela Longo & Dario Zaninelli, 2024. "Make-or-Buy Policy Decision in Maintenance Planning for Mobility: A Multi-Criteria Approach," Logistics, MDPI, vol. 8(2), pages 1-18, May.
    18. Kik, M.C. & Claassen, G.D.H. & Meuwissen, M.P.M. & Smit, A.B. & Saatkamp, H.W., 2021. "Actor analysis for sustainable soil management – A case study from the Netherlands," Land Use Policy, Elsevier, vol. 107(C).
    19. D. K. Choudhury, 2019. "Standard Critical Path and Selection of Most Economic and Quality Contractors for Construction of Thermal Power Plant: A Case Study in NTPC," Metamorphosis: A Journal of Management Research, , vol. 18(2), pages 103-118, December.
    20. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:15:p:4096-:d:252738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.