IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i12p3357-d240648.html
   My bibliography  Save this article

Optimal Travel Route Recommendation Mechanism Based on Neural Networks and Particle Swarm Optimization for Efficient Tourism Using Tourist Vehicular Data

Author

Listed:
  • Sehrish Malik

    (Computer Engineering Department, Jeju National University, Jeju-si 63243, Korea)

  • DoHyeun Kim

    (Computer Engineering Department, Jeju National University, Jeju-si 63243, Korea)

Abstract

With the swift growth in tourism all around the world, it has become vital to introduce advancements and improvements to the services provided to the tourists, in order to ensure their ease of travel and satisfaction. Optimal travel route identification and recommendation is one of these amenities, which requires our attention as a basic and much-needed facility to improve the experience of travelers. In this work, we propose an optimal route recommendation mechanism for the prediction of the next tourist attraction and optimal route recommendation to the predicted tourist attraction. The algorithms used in the proposed methodology are neural networks for prediction and particle swarm optimization for finding the optimal route. We design an objective function for the route optimization based on the five route parameters of distance, road congestion, weather conditions, route popularity, and user preference. The data used is the tourism data of Jeju Island from December 2016 to December 2017. The performance analysis in the prediction mechanism is performed based on the accuracy of test data results with varying route sizes, while for route optimization, the obtained results are compared with the non-optimized technique. Also, comparisons analysis is performed by comparing the performance of the applied particle swarm optimization algorithm with an identical system-level implementation of the genetic algorithm, which is one of most widely used optimization algorithms. An extended comparative analysis with some related recommendation system studies is also performed based on key optimization factors in route optimization.

Suggested Citation

  • Sehrish Malik & DoHyeun Kim, 2019. "Optimal Travel Route Recommendation Mechanism Based on Neural Networks and Particle Swarm Optimization for Efficient Tourism Using Tourist Vehicular Data," Sustainability, MDPI, vol. 11(12), pages 1-26, June.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:12:p:3357-:d:240648
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/12/3357/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/12/3357/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Songyi Wang & Fengming Tao & Yuhe Shi & Haolin Wen, 2017. "Optimization of Vehicle Routing Problem with Time Windows for Cold Chain Logistics Based on Carbon Tax," Sustainability, MDPI, vol. 9(5), pages 1-23, April.
    2. Zheng, Weimin & Huang, Xiaoting & Li, Yuan, 2017. "Understanding the tourist mobility using GPS: Where is the next place?," Tourism Management, Elsevier, vol. 59(C), pages 267-280.
    3. Naixia Mou & Caixia Liu & Lingxian Zhang & Xin Fu & Yichun Xie & Yong Li & Peng Peng, 2018. "Spatial Pattern and Regional Relevance Analysis of the Maritime Silk Road Shipping Network," Sustainability, MDPI, vol. 10(4), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wafa Shafqat & Yung-Cheol Byun, 2019. "A Recommendation Mechanism for Under-Emphasized Tourist Spots Using Topic Modeling and Sentiment Analysis," Sustainability, MDPI, vol. 12(1), pages 1-26, December.
    2. Bawan Mahmood & Jalil Kianfar, 2019. "Driver Behavior Models for Heavy Vehicles and Passenger Cars at a Work Zone," Sustainability, MDPI, vol. 11(21), pages 1-15, October.
    3. Xiaofei Huang & Vishal Jagota & Einer Espinoza-Muñoz & Judith Flores-Albornoz, 2022. "Tourist hot spots prediction model based on optimized neural network algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 63-71, March.
    4. Domokos Esztergár-Kiss, 2020. "Trip Chaining Model with Classification and Optimization Parameters," Sustainability, MDPI, vol. 12(16), pages 1-15, August.
    5. Viomesh Kumar Singh & Sangeeta Sabharwal & Goldie Gabrani, 2022. "A new fuzzy clustering-based recommendation method using grasshopper optimization algorithm and Map-Reduce," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2698-2709, October.
    6. Cristina Maria Păcurar & Ruxandra-Gabriela Albu & Victor Dan Păcurar, 2021. "Tourist Route Optimization in the Context of Covid-19 Pandemic," Sustainability, MDPI, vol. 13(10), pages 1-17, May.
    7. Mengyi Lin & Fu-Yuan Li & Haibin Zhou, 2020. "A Research on the Combination of Oblique Photography and Mobile Applications Based on the Sustainable Development of Tourism," Sustainability, MDPI, vol. 12(9), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafael Tordecilla-Madera & Andrés Polo & Adrián Cañón, 2018. "Vehicles Allocation for Fruit Distribution Considering CO 2 Emissions and Decisions on Subcontracting," Sustainability, MDPI, vol. 10(7), pages 1-21, July.
    2. Andrea Gallo & Riccardo Accorsi & Giulia Baruffaldi & Riccardo Manzini, 2017. "Designing Sustainable Cold Chains for Long-Range Food Distribution: Energy-Effective Corridors on the Silk Road Belt," Sustainability, MDPI, vol. 9(11), pages 1-20, November.
    3. Yuhe Shi & Zhenggang He, 2018. "Decision Analysis of Disturbance Management in the Process of Medical Supplies Transportation after Natural Disasters," IJERPH, MDPI, vol. 15(8), pages 1-18, August.
    4. Songyi Wang & Fengming Tao & Yuhe Shi, 2018. "Optimization of Location–Routing Problem for Cold Chain Logistics Considering Carbon Footprint," IJERPH, MDPI, vol. 15(1), pages 1-17, January.
    5. Ling Shen & Fengming Tao & Songyi Wang, 2018. "Multi-Depot Open Vehicle Routing Problem with Time Windows Based on Carbon Trading," IJERPH, MDPI, vol. 15(9), pages 1-20, September.
    6. Naixia Mou & Chunying Wang & Tengfei Yang & Lingxian Zhang, 2020. "Evaluation of Development Potential of Ports in the Yangtze River Delta Using FAHP-Entropy Model," Sustainability, MDPI, vol. 12(2), pages 1-24, January.
    7. Changping Zhao & Xiaojiang Xu & Yu Gong & Houming Fan & Haojia Chen, 2019. "Blue Carbon Cooperation in the Maritime Silk Road with Network Game Model and Simulation," Sustainability, MDPI, vol. 11(10), pages 1-27, May.
    8. Ruiz-Meza, José & Montoya-Torres, Jairo R., 2022. "A systematic literature review for the tourist trip design problem: Extensions, solution techniques and future research lines," Operations Research Perspectives, Elsevier, vol. 9(C).
    9. Wenping Liu & Chenlu Dong & Weijuan Chen, 2017. "Mapping and Quantifying Spatial and Temporal Dynamics and Bundles of Travel Flows of Residents Visiting Urban Parks," Sustainability, MDPI, vol. 9(8), pages 1-15, July.
    10. Abdul Salam Khan & Bashir Salah & Dominik Zimon & Muhammad Ikram & Razaullah Khan & Catalin I. Pruncu, 2020. "A Sustainable Distribution Design for Multi-Quality Multiple-Cold-Chain Products: An Integrated Inspection Strategies Approach," Energies, MDPI, vol. 13(24), pages 1-25, December.
    11. Garside, Annisa Kesy & Ahmad, Robiah & Muhtazaruddin, Mohd Nabil Bin, 2024. "A recent review of solution approaches for green vehicle routing problem and its variants," Operations Research Perspectives, Elsevier, vol. 12(C).
    12. Zhicheng Shen & Xinliang Xu & Jiahao Li & Shikuan Wang, 2019. "Vulnerability of the Maritime Network to Tropical Cyclones in the Northwest Pacific and the Northern Indian Ocean," Sustainability, MDPI, vol. 11(21), pages 1-14, November.
    13. Yong Wang & Shouguo Peng & Kevin Assogba & Yong Liu & Haizhong Wang & Maozeng Xu & Yinhai Wang, 2018. "Implementation of Cooperation for Recycling Vehicle Routing Optimization in Two-Echelon Reverse Logistics Networks," Sustainability, MDPI, vol. 10(5), pages 1-27, April.
    14. Ducruet, César, 2020. "The geography of maritime networks: A critical review," Journal of Transport Geography, Elsevier, vol. 88(C).
    15. Wei Hu & Yuejing Ge & Zhiding Hu & Na Li & Li Ye & Ziran Jiang & Yun Deng & Shufang Wang & Yue Shan, 2022. "Features of Geo-Economic Network between China and Countries along the 21st Century Maritime Silk Road," Sustainability, MDPI, vol. 14(18), pages 1-22, September.
    16. Yi Zhang & Guowei Hua & T. C. E. Cheng & Juliang Zhang, 2020. "Cold chain distribution: How to deal with node and arc time windows?," Annals of Operations Research, Springer, vol. 291(1), pages 1127-1151, August.
    17. Naixia Mou & Yanxin Xie & Tengfei Yang & Hengcai Zhang & Yoo Ri Kim, 2019. "The Impact of Slumping Oil Price on the Situation of Tanker Shipping along the Maritime Silk Road," Sustainability, MDPI, vol. 11(17), pages 1-16, September.
    18. Samita Kedkaew & Warisa Nakkiew & Parida Jewpanya & Wasawat Nakkiew, 2024. "A Novel Tourist Trip Design Problem with Stochastic Travel Times and Partial Charging for Battery Electric Vehicles," Mathematics, MDPI, vol. 12(18), pages 1-19, September.
    19. Kai Shen & Jan-Dirk Schmöcker & Wenzhe Sun & Ali Gul Qureshi, 2023. "Calibration of sightseeing tour choices considering multiple decision criteria with diminishing reward," Transportation, Springer, vol. 50(5), pages 1897-1921, October.
    20. José Ruiz-Meza & Julio Brito & Jairo R. Montoya-Torres, 2021. "Multi-Objective Fuzzy Tourist Trip Design Problem with Heterogeneous Preferences and Sustainable Itineraries," Sustainability, MDPI, vol. 13(17), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:12:p:3357-:d:240648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.