IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2018i1p154-d193773.html
   My bibliography  Save this article

Cooperation of Voltage Controlled Active Power Filter with Grid-Connected DGs in Microgrid

Author

Listed:
  • Hafiz Mudassir Munir

    (School of Automation Engineering, University of Electronic Sciences and Technology of China, Chengdu 611731, Sichuan, China)

  • Jianxiao Zou

    (School of Automation Engineering, University of Electronic Sciences and Technology of China, Chengdu 611731, Sichuan, China)

  • Chuan Xie

    (School of Automation Engineering, University of Electronic Sciences and Technology of China, Chengdu 611731, Sichuan, China)

  • Josep M. Guerrero

    (Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

Abstract

Due to the excessive use of nonlinear loads and inverter interfaced distributed generators, harmonic issues have been regarded as a major concern in power distribution systems. Therefore, harmonic compensation in microgrids is a subject of current interest. Consequently, a novel direct harmonic voltage-controlled mode (VCM) active power filter (APF) is proposed to mitigate the harmonics in a cooperative manner and provide a better harmonic compensation performance of less than 5%. Due to the dispersive characteristics of renewable energy resources, voltage feedback based on a harmonic compensation control loop is implemented for the first time. This system can be smoothly combined with the current control loop. Our method proposes a better performance while mitigating the harmonics in comparison with conventional resistive active power filters (R-APF). Based on direct voltage detection at the point of common coupling (PCC), the proposed VCM-APF can therefore be seamlessly incorporated with multiple grid-connected generators (DGs) to enhance their harmonic compensation capabilities. The advantage of this scheme is that it avoids the need for designing and tuning the resistance, which was required in earlier conventional control schemes of R-APF for voltage unbalance compensation. Additionally, our scheme does not require the grid and load current measurements since these can be carried out at the PCC voltage, which further reduces the implementation cost of the system. Furthermore, the simulation results show the significance of proposed method.

Suggested Citation

  • Hafiz Mudassir Munir & Jianxiao Zou & Chuan Xie & Josep M. Guerrero, 2018. "Cooperation of Voltage Controlled Active Power Filter with Grid-Connected DGs in Microgrid," Sustainability, MDPI, vol. 11(1), pages 1-15, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2018:i:1:p:154-:d:193773
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/1/154/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/1/154/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    2. Khadem, S.K. & Basu, M. & Conlon, M.F., 2011. "Parallel operation of inverters and active power filters in distributed generation system—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5155-5168.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khaled Chahine & Mohamad Tarnini & Nazih Moubayed & Abdallah El Ghaly, 2023. "Power Quality Enhancement of Grid-Connected Renewable Systems Using a Matrix-Pencil-Based Active Power Filter," Sustainability, MDPI, vol. 15(1), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milosz Krysik & Krzysztof Piotrowski & Krzysztof Turchan, 2022. "Testing Smart Grid Scenarios with Small Volume Testbed and Flexible Power Inverter," Energies, MDPI, vol. 15(2), pages 1-20, January.
    2. Adil Amin & Wajahat Ullah Khan Tareen & Muhammad Usman & Haider Ali & Inam Bari & Ben Horan & Saad Mekhilef & Muhammad Asif & Saeed Ahmed & Anzar Mahmood, 2020. "A Review of Optimal Charging Strategy for Electric Vehicles under Dynamic Pricing Schemes in the Distribution Charging Network," Sustainability, MDPI, vol. 12(23), pages 1-28, December.
    3. Wajahat Ullah Khan Tareen & Zuha Anjum & Nabila Yasin & Leenah Siddiqui & Ifzana Farhat & Suheel Abdullah Malik & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Mohamed Darwish & Muhammad Aamir &, 2018. "The Prospective Non-Conventional Alternate and Renewable Energy Sources in Pakistan—A Focus on Biomass Energy for Power Generation, Transportation, and Industrial Fuel," Energies, MDPI, vol. 11(9), pages 1-49, September.
    4. Muhammad Ahmad Khan & Xiaocong Li & Muhammad Zain Yousaf & Ali Mustafa & Mingshuo Wei, 2021. "Metaheuristic Based Solution for the Non‐Linear Controller of the Multiterminal High‐Voltage Direct Current Networks," Energies, MDPI, vol. 14(6), pages 1-20, March.
    5. Arul, P.G. & Ramachandaramurthy, Vigna K. & Rajkumar, R.K., 2015. "Control strategies for a hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 597-608.
    6. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    7. Wajahat Ullah Khan Tareen & Muhammad Tariq Dilbar & Muhammad Farhan & Muhammad Ali Nawaz & Ali Waqar Durrani & Kamran Ali Memon & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Muhammad Amir & Mu, 2019. "Present Status and Potential of Biomass Energy in Pakistan Based on Existing and Future Renewable Resources," Sustainability, MDPI, vol. 12(1), pages 1-40, December.
    8. Muhammad Moin Afzal & Muhammad Adil Khan & Muhammad Arshad Shehzad Hassan & Abdul Wadood & Waqar Uddin & S. Hussain & Sang Bong Rhee, 2020. "A Comparative Study of Supercapacitor-Based STATCOM in a Grid-Connected Photovoltaic System for Regulating Power Quality Issues," Sustainability, MDPI, vol. 12(17), pages 1-26, August.
    9. Palizban, Omid & Kauhaniemi, Kimmo & Guerrero, Josep M., 2014. "Microgrids in active network management – part II: System operation, power quality and protection," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 440-451.
    10. Khlid Ben Hamad & Doudou N. Luta & Atanda K. Raji, 2021. "A Grid-Tied Fuel Cell Multilevel Inverter with Low Harmonic Distortions," Energies, MDPI, vol. 14(3), pages 1-24, January.
    11. Mariam, Lubna & Basu, Malabika & Conlon, Michael F., 2016. "Microgrid: Architecture, policy and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 477-489.
    12. Manuel Ayala-Chauvin & Bahodurjon S. Kavrakov & Jorge Buele & José Varela-Aldás, 2021. "Static Reactive Power Compensator Design, Based on Three-Phase Voltage Converter," Energies, MDPI, vol. 14(8), pages 1-16, April.
    13. Shengbao Yu & Nan Chen & Lihui Gao & Haigen Zhou & Yong Huang, 2019. "Suppressing Conducted DM EMI in an Active Power Filter via Periodic Carrier Frequency Modulation," Energies, MDPI, vol. 12(10), pages 1-14, May.
    14. Ding, Xiaofeng & Chen, Feida & Du, Min & Guo, Hong & Ren, Suping, 2017. "Effects of silicon carbide MOSFETs on the efficiency and power quality of a microgrid-connected inverter," Applied Energy, Elsevier, vol. 201(C), pages 270-283.
    15. Unamuno, Eneko & Barrena, Jon Andoni, 2015. "Hybrid ac/dc microgrids—Part I: Review and classification of topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1251-1259.
    16. Aamir, Muhammad & Ahmed Kalwar, Kafeel & Mekhilef, Saad, 2016. "Review: Uninterruptible Power Supply (UPS) system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1395-1410.
    17. Palizban, Omid & Kauhaniemi, Kimmo & Guerrero, Josep M., 2014. "Microgrids in active network management—Part I: Hierarchical control, energy storage, virtual power plants, and market participation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 428-439.
    18. Monica, P. & Kowsalya, M., 2016. "Control strategies of parallel operated inverters in renewable energy application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 885-901.
    19. Adil Amin & Wajahat Ullah Khan Tareen & Muhammad Usman & Kamran Ali Memon & Ben Horan & Anzar Mahmood & Saad Mekhilef, 2020. "An Integrated Approach to Optimal Charging Scheduling of Electric Vehicles Integrated with Improved Medium-Voltage Network Reconfiguration for Power Loss Minimization," Sustainability, MDPI, vol. 12(21), pages 1-15, November.
    20. Hanan Tariq & Stanislaw Czapp & Sarmad Tariq & Khalid Mehmood Cheema & Aqarib Hussain & Ahmad H. Milyani & Sultan Alghamdi & Z. M. Salem Elbarbary, 2022. "Comparative Analysis of Reactive Power Compensation Devices in a Real Electric Substation," Energies, MDPI, vol. 15(12), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2018:i:1:p:154-:d:193773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.