IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i9p3209-d168448.html
   My bibliography  Save this article

Comparing the Hydrological Responses of Conceptual and Process-Based Models with Varying Rain Gauge Density and Distribution

Author

Listed:
  • Zhaokai Yin

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China)

  • Weihong Liao

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Xiaohui Lei

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
    Science and Technology Innovation Center for Smart Water, Northeastern University, Shenyang 110819, China)

  • Hao Wang

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
    Science and Technology Innovation Center for Smart Water, Northeastern University, Shenyang 110819, China)

  • Ruojia Wang

    (Department of Information Management, Peking University, Beijing 100871, China
    Institute of Ocean Research, Peking University, Beijing 100871, China)

Abstract

Precipitation provides the most crucial input for hydrological modeling. However, rain gauge networks, the most common precipitation measurement mechanisms, are sometimes sparse and inadequately distributed in practice, resulting in an imperfect representation of rainfall spatial variability. The objective of this study is to analyze the sensitivity of different model structures to the different density and distribution of rain gauges and evaluate their reliability and robustness. Based on a rain gauge network of 20 gauges in the Jinjiang River Basin, south-eastern China, this study compared the performance of two conceptual models (the hydrologic model (HYMOD) and Xinanjiang) and one process-based distributed model (the water and energy transfer between soil, plants and atmosphere model (WetSpa)) with different rain gauge distributions. The results show that the average accuracy for the three models is generally stable as the number of rain gauges decreases but is sensitive to changes in the network distribution. HYMOD has the highest calibration uncertainty, followed by Xinanjiang and WetSpa. Differing model responses are consistent with changes in network distribution, while calibration uncertainties are more related to model structures.

Suggested Citation

  • Zhaokai Yin & Weihong Liao & Xiaohui Lei & Hao Wang & Ruojia Wang, 2018. "Comparing the Hydrological Responses of Conceptual and Process-Based Models with Varying Rain Gauge Density and Distribution," Sustainability, MDPI, vol. 10(9), pages 1-22, September.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:3209-:d:168448
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/9/3209/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/9/3209/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiazheng Lu & Jun Guo & Li Yang & Xunjian Xu, 2017. "Research of reservoir watershed fine zoning and flood forecasting method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1291-1306, December.
    2. Patrick E. Brown & Peter J. Diggle & Martin E. Lord & Peter C. Young, 2001. "Space–time calibration of radar rainfall data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(2), pages 221-241.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Liu & Ting Zhang & Aiqing Kang & Jianzhu Li & Xiaohui Lei, 2021. "Research on Runoff Simulations Using Deep-Learning Methods," Sustainability, MDPI, vol. 13(3), pages 1-20, January.
    2. de Oliveira Simoyama, Felipe & Croope, Silvana & de Salles Neto, Luiz Leduino & Santos, Leonardo Bacelar Lima, 2023. "Optimization of rain gauge networks—A systematic literature review," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David O'Donnell & Alastair Rushworth & Adrian W. Bowman & E. Marian Scott & Mark Hallard, 2014. "Flexible regression models over river networks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 47-63, January.
    2. Christopher K. Wikle, 2003. "Hierarchical Models in Environmental Science," International Statistical Review, International Statistical Institute, vol. 71(2), pages 181-199, August.
    3. Xinyu Wan & Qingyan Yang & Peng Jiang & Ping’an Zhong, 2019. "A Hybrid Model for Real-Time Probabilistic Flood Forecasting Using Elman Neural Network with Heterogeneity of Error Distributions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 4027-4050, September.
    4. Alexandre Rodrigues & Peter J. Diggle, 2010. "A Class of Convolution‐Based Models for Spatio‐Temporal Processes with Non‐Separable Covariance Structure," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 553-567, December.
    5. Sabyasachi Mukhopadhyay & Joseph O. Ogutu & Gundula Bartzke & Holly T. Dublin & Hans-Peter Piepho, 2019. "Modelling Spatio-Temporal Variation in Sparse Rainfall Data Using a Hierarchical Bayesian Regression Model," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 369-393, June.
    6. Mitchell, Matthew W. & Genton, Marc G. & Gumpertz, Marcia L., 2006. "A likelihood ratio test for separability of covariances," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1025-1043, May.
    7. Fred Espen Benth & Jūratė Šaltytė Benth, 2012. "Modeling and Pricing in Financial Markets for Weather Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8457, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:3209-:d:168448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.