IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i8p2845-d163082.html
   My bibliography  Save this article

Energy Conservation Potential Assessment Method for Table Grapes Supply Chain

Author

Listed:
  • Xinqing Xiao

    (College of Engineering, China Agricultural University, Beijing 100083, China
    Beijing Laboratory of Food Quality and Safety, Beijing 100083, China)

  • Xu Zhang

    (College of Engineering, China Agricultural University, Beijing 100083, China
    Beijing Laboratory of Food Quality and Safety, Beijing 100083, China)

  • Zetian Fu

    (College of Engineering, China Agricultural University, Beijing 100083, China
    Beijing Laboratory of Food Quality and Safety, Beijing 100083, China)

  • Weisong Mu

    (College of Engineering, China Agricultural University, Beijing 100083, China
    Beijing Laboratory of Food Quality and Safety, Beijing 100083, China)

  • Xiaoshuan Zhang

    (College of Engineering, China Agricultural University, Beijing 100083, China
    Beijing Laboratory of Food Quality and Safety, Beijing 100083, China)

Abstract

Energy consumption is one of the most crucial issues in the table grapes supply chain. However, the potential for energy conservation assessment is still limited because of the complexity of the process. The aim of this paper is to propose an energy conservation potential assessment method in order to increase energy consumption transparency and help managers take appropriate energy conservation measures to reduce the energy consumption in the table grapes supply chain. The conservation potential assessment in three kinds of the supply chain modes (the normal chain, the cold insulation chain and the cold chain), were realized by integrating the actual energy consumption investigated with the unified energy consumption per unit energy factor that represents the energy consumption throughout the entire product lifecycle. According to the comprehensive analysis of the energy consumption compared with the energy conservation potential in actual supply chain of table grapes, the proposed energy conservation potential assessment method could provide a unified method for evaluating the energy conservation potential in different supply chain mode of table grapes. The energy conversation potential in cold insulation chain, which was about 0.985, was the highest and that in cold chain, which was about 0.935, was the smallest. However, the cold chain was still the optimal supply chain for the table grapes because of the characteristics of the longest storage shelf life and the lowest quality decay, and the cold chain energy consumption would be further reduced by adopting the more advanced refrigeration and preservation technologies. The proposed energy conservation potential assessment method could be extended for other supply chain applications to evaluate their own energy conservation potential, and thus, reduce their energy consumption.

Suggested Citation

  • Xinqing Xiao & Xu Zhang & Zetian Fu & Weisong Mu & Xiaoshuan Zhang, 2018. "Energy Conservation Potential Assessment Method for Table Grapes Supply Chain," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2845-:d:163082
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/8/2845/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/8/2845/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Beske, Philip & Land, Anna & Seuring, Stefan, 2014. "Sustainable supply chain management practices and dynamic capabilities in the food industry: A critical analysis of the literature," International Journal of Production Economics, Elsevier, vol. 152(C), pages 131-143.
    2. Huang, Yonghua & Wang, Bin & Zhou, Shaohua & Wu, Jingyi & Lei, Gang & Li, Peng & Sun, Peijie, 2017. "Modeling and experimental study on combination of foam and variable density multilayer insulation for cryogen storage," Energy, Elsevier, vol. 123(C), pages 487-498.
    3. Heidari, M.D. & Omid, M., 2011. "Energy use patterns and econometric models of major greenhouse vegetable productions in Iran," Energy, Elsevier, vol. 36(1), pages 220-225.
    4. Saad, A.A. & Das, T.K. & Rana, D.S. & Sharma, A.R. & Bhattacharyya, Ranjan & Lal, Krishan, 2016. "Energy auditing of a maize–wheat–greengram cropping system under conventional and conservation agriculture in irrigated north-western Indo-Gangetic Plains," Energy, Elsevier, vol. 116(P1), pages 293-305.
    5. Finn, P. & Fitzpatrick, C. & Connolly, D. & Leahy, M. & Relihan, L., 2011. "Facilitation of renewable electricity using price based appliance control in Ireland’s electricity market," Energy, Elsevier, vol. 36(5), pages 2952-2960.
    6. Li, Yu-Chu M. & Chen, Yen-Hong A., 2016. "Assessing the thermal performance of three cold energy storage materials with low eutectic temperature for food cold chain," Energy, Elsevier, vol. 115(P1), pages 238-256.
    7. Brandenburg, Marcus & Govindan, Kannan & Sarkis, Joseph & Seuring, Stefan, 2014. "Quantitative models for sustainable supply chain management: Developments and directions," European Journal of Operational Research, Elsevier, vol. 233(2), pages 299-312.
    8. Wu, Xuecheng & Zhao, Liang & Zhang, Yongxin & Zhao, Lingjie & Zheng, Chenghang & Gao, Xiang & Cen, Kefa, 2016. "Cost and potential of energy conservation and collaborative pollutant reduction in the iron and steel industry in China," Applied Energy, Elsevier, vol. 184(C), pages 171-183.
    9. Wang, Xi & Cai, Hua & Florig, H. Keith, 2016. "Energy-saving implications from supply chain improvement: An exploratory study on China's consumer goods retail system," Energy Policy, Elsevier, vol. 95(C), pages 411-420.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riye Sha & Shuhua Zhu & Linnan Wu & Xujiao Li & Huanhuan Zhang & Dongdong Yao & Qi Lv & Fangxia Wang & Fengyun Zhao & Pengcheng Li & Kun Yu, 2022. "Pre-Harvest Application of Multi-Walled Carbon Nanotubes Improves the Antioxidant Capacity of ‘Flame Seedless’ Grapes during Storage," Sustainability, MDPI, vol. 14(15), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wensi Zhang & Jing Xiao & Lingfei Cai, 2020. "Joint Emission Reduction Strategy in Green Supply Chain under Environmental Regulation," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    2. Rohmer, S.U.K. & Gerdessen, J.C. & Claassen, G.D.H., 2019. "Sustainable supply chain design in the food system with dietary considerations: A multi-objective analysis," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1149-1164.
    3. Andrzej Lis & Agata Sudolska & Mateusz Tomanek, 2020. "Mapping Research on Sustainable Supply-Chain Management," Sustainability, MDPI, vol. 12(10), pages 1-26, May.
    4. Omar Alsetoohy & Baker Ayoun & Mahmoud Abou-Kamar, 2021. "COVID-19 Pandemic Is a Wake-Up Call for Sustainable Local Food Supply Chains: Evidence from Green Restaurants in the USA," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    5. Martins, C.L. & Melo, M.T. & Pato, M.V., 2019. "Redesigning a food bank supply chain network in a triple bottom line context," International Journal of Production Economics, Elsevier, vol. 214(C), pages 234-247.
    6. Martins, C. L. & Melo, Teresa & Pato, Margarida Vaz, 2016. "Redesigning a food bank supply chain network, Part I: Background and mathematical formulation," Technical Reports on Logistics of the Saarland Business School 10, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    7. Sgarbossa, Fabio & Russo, Ivan, 2017. "A proactive model in sustainable food supply chain: Insight from a case study," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 596-606.
    8. Mariana Toussaint & Pablo Cabanelas & Alicia Blanco‐González, 2021. "Social sustainability in the food value chain: An integrative approach beyond corporate social responsibility," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 28(1), pages 103-115, January.
    9. Naoum Tsolakis & Foivos Anastasiadis & Jagjit Singh Srai, 2018. "Sustainability Performance in Food Supply Networks: Insights from the UK Industry," Sustainability, MDPI, vol. 10(9), pages 1-13, September.
    10. Hassan Abbas & Shu Tong, 2023. "Green Supply Chain Management Practices of Firms with Competitive Strategic Alliances—A Study of the Automobile Industry," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    11. Weihua Liu & Enze Bai & Liwei Liu & Wanying Wei, 2017. "A Framework of Sustainable Service Supply Chain Management: A Literature Review and Research Agenda," Sustainability, MDPI, vol. 9(3), pages 1-25, March.
    12. Tobias Rebs & Daniel Thiel & Marcus Brandenburg & Stefan Seuring, 2019. "Impacts of stakeholder influences and dynamic capabilities on the sustainability performance of supply chains: a system dynamics model," Journal of Business Economics, Springer, vol. 89(7), pages 893-926, September.
    13. Taghikhah, Firouzeh & Voinov, Alexey & Shukla, Nagesh & Filatova, Tatiana & Anufriev, Mikhail, 2021. "Integrated modeling of extended agro-food supply chains: A systems approach," European Journal of Operational Research, Elsevier, vol. 288(3), pages 852-868.
    14. Marcus Brandenburg & Tim Gruchmann & Nelly Oelze, 2019. "Sustainable Supply Chain Management—A Conceptual Framework and Future Research Perspectives," Sustainability, MDPI, vol. 11(24), pages 1-15, December.
    15. Marina Segura & Concepción Maroto & Baldomero Segura, 2019. "Quantifying the Sustainability of Products and Suppliers in Food Distribution Companies," Sustainability, MDPI, vol. 11(21), pages 1-18, October.
    16. Katherinne Salas-Navarro & Paula Serrano-Pájaro & Holman Ospina-Mateus & Ronald Zamora-Musa, 2022. "Inventory Models in a Sustainable Supply Chain: A Bibliometric Analysis," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    17. Beatrice Marchi & Simone Zanoni, 2017. "Supply Chain Management for Improved Energy Efficiency: Review and Opportunities," Energies, MDPI, vol. 10(10), pages 1-29, October.
    18. Gunasekaran, Angappa & Irani, Zahir & Choy, King-Lun & Filippi, Lionel & Papadopoulos, Thanos, 2015. "Performance measures and metrics in outsourcing decisions: A review for research and applications," International Journal of Production Economics, Elsevier, vol. 161(C), pages 153-166.
    19. Carlson, Laura A. & Bitsch, Vera, 2018. "Social sustainability in the ready-made-garment sector in Bangladesh: an institutional approach to supply chains," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 21(2), March.
    20. Mallidis, Ioannis & Vlachos, Dimitrios & Iakovou, Eleftherios & Dekker, Rommert, 2014. "Design and planning for green global supply chains under periodic review replenishment policies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 210-235.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2845-:d:163082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.