IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v123y2017icp487-498.html
   My bibliography  Save this article

Modeling and experimental study on combination of foam and variable density multilayer insulation for cryogen storage

Author

Listed:
  • Huang, Yonghua
  • Wang, Bin
  • Zhou, Shaohua
  • Wu, Jingyi
  • Lei, Gang
  • Li, Peng
  • Sun, Peijie

Abstract

A combination of polyurethane foam and multilayer insulation is adaptive and qualified for cryogenic propellant storage application, both on orbit for long-duration mission and on earth before and during launching. A generalized layer by layer model has been proposed to predict the thermal performance of the “Foam - Variable Density Multilayer Insulation combination” (FMLI) at different vacuum levels. A cryogen boil-off calorimeter system was designed and fabricated to measure the temperature profile and the apparent thermal conductivity of FMLI samples over a wide range of vacuum level (10−3 - 105 Pa). The experimental data verified the validity of the model and indicated that the heat fluxes through the FMLI and the single VDMLI almost made no difference in vacuum of 10−3 Pa, which were both equal to 0.23 W·m−2 with the boundary temperatures of 77 and 293 K, respectively. However, at the atmosphere level of 105 Pa, the heat fluxes through the FMLI and the single VDMLI significantly differed from each other and exacerbated to 45.2 and 147.8 W·m−2, respectively. In addition, a comparison between FMLI and Aerogel-MLI was also conducted for the same thickness and weight of VDMLI and at the same boundary temperatures and vacuum levels.

Suggested Citation

  • Huang, Yonghua & Wang, Bin & Zhou, Shaohua & Wu, Jingyi & Lei, Gang & Li, Peng & Sun, Peijie, 2017. "Modeling and experimental study on combination of foam and variable density multilayer insulation for cryogen storage," Energy, Elsevier, vol. 123(C), pages 487-498.
  • Handle: RePEc:eee:energy:v:123:y:2017:i:c:p:487-498
    DOI: 10.1016/j.energy.2017.01.147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217301524
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.01.147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Aziz, 2021. "Liquid Hydrogen: A Review on Liquefaction, Storage, Transportation, and Safety," Energies, MDPI, vol. 14(18), pages 1-29, September.
    2. Zhang, Tongtong & Uratani, Joao & Huang, Yixuan & Xu, Lejin & Griffiths, Steve & Ding, Yulong, 2023. "Hydrogen liquefaction and storage: Recent progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    3. Zheng, Jianpeng & Chen, Liubiao & Liu, Xuming & Zhu, Honglai & Zhou, Yuan & Wang, Junjie, 2020. "Thermodynamic optimization of composite insulation system with cold shield for liquid hydrogen zero-boil-off storage," Renewable Energy, Elsevier, vol. 147(P1), pages 824-832.
    4. Guo, Haijin & Cai, Shanshan & Li, Kun & Liu, Zhongming & Xia, Lizhi & Xiong, Jiazhuang, 2020. "Simultaneous test and visual identification of heat and moisture transport in several types of thermal insulation," Energy, Elsevier, vol. 197(C).
    5. Jiang, Wenbing & Sun, Peijie & Li, Peng & Zuo, Zhongqi & Huang, Yonghua, 2021. "Transient thermal behavior of multi-layer insulation coupled with vapor cooled shield used for liquid hydrogen storage tank," Energy, Elsevier, vol. 231(C).
    6. Kecen Li & Jie Chen & Xueqin Tian & Yujing He, 2022. "Study on the Performance of Variable Density Multilayer Insulation in Liquid Hydrogen Temperature Region," Energies, MDPI, vol. 15(24), pages 1-17, December.
    7. Hassan, I.A. & Ramadan, Haitham S. & Saleh, Mohamed A. & Hissel, Daniel, 2021. "Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Daehoon Kang & Sungho Yun & Bo-kyong Kim, 2022. "Review of the Liquid Hydrogen Storage Tank and Insulation System for the High-Power Locomotive," Energies, MDPI, vol. 15(12), pages 1-13, June.
    9. Li, Ke & Wen, Jian & Xin, Biping & Zhou, Aimin & Wang, Simin, 2024. "Transient-state modeling and thermodynamic analysis of self-pressurization liquid hydrogen tank considering effect of vacuum multi-layer insulation coupled with vapor-cooled shield," Energy, Elsevier, vol. 286(C).
    10. Deng, B.C. & Yang, S.Q. & Xie, X.J. & Wang, Y.L. & Pan, W. & Li, Q. & Gong, L.H., 2019. "Thermal performance assessment of cryogenic transfer line with support and multilayer insulation for cryogenic fluid," Applied Energy, Elsevier, vol. 250(C), pages 895-903.
    11. Xinqing Xiao & Xu Zhang & Zetian Fu & Weisong Mu & Xiaoshuan Zhang, 2018. "Energy Conservation Potential Assessment Method for Table Grapes Supply Chain," Sustainability, MDPI, vol. 10(8), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:123:y:2017:i:c:p:487-498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.