IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i6p2064-d153070.html
   My bibliography  Save this article

Contrasted Effects of Relative Humidity and Precipitation on Urban PM 2.5 Pollution in High Elevation Urban Areas

Author

Listed:
  • Rasa Zalakeviciute

    (Intelligent & Interactive Systems Lab (SI2 Lab), Facultad de Ingeniería y Ciencias Agropecuarias (FICA), Universidad de Las América, 170125 Quito, Ecuador)

  • Jesús López-Villada

    (Department of Mechanical Engineering, Escuela Politécnica Nacional, Ladrón de Guevara, E11-253, 170525 Quito, Ecuador)

  • Yves Rybarczyk

    (Intelligent & Interactive Systems Lab (SI2 Lab), Facultad de Ingeniería y Ciencias Agropecuarias (FICA), Universidad de Las América, 170125 Quito, Ecuador
    Department of Electrical Engineering, CTS/UNINOVA, Nova University of Lisbon, 2829-516 Monte de Caparica, Portugal)

Abstract

Levels of urban pollution can be influenced largely by meteorological conditions and the topography of the area. The impact of the relative humidity (RH) on the daily average PM 2.5 concentrations was studied at several sites in a mid-size South American city at a high elevation over the period of nine years. In this work, we show that there is a positive correlation between daily average urban PM 2.5 concentrations and the RH in traffic-busy central areas, and a negative correlation in the outskirts of the city in more industrial areas. While in the traffic sites strong events of precipitation (≥9 mm) played a major role in PM 2.5 pollution removal, in the city outskirts, the PM 2.5 concentrations decreased with increasing RH independently of rain accumulation. Increasing PM 2.5 concentrations are to be expected in any highly motorized city where there is high RH and a lack of strong precipitation, especially in rapidly growing and developing countries with high motorization due to poor fuel quality. Finally, two models, based on a logistic regression algorithm, are proposed to describe the effect of rain and RH on PM 2.5 , when the source of pollution is traffic-based vs. industry-based.

Suggested Citation

  • Rasa Zalakeviciute & Jesús López-Villada & Yves Rybarczyk, 2018. "Contrasted Effects of Relative Humidity and Precipitation on Urban PM 2.5 Pollution in High Elevation Urban Areas," Sustainability, MDPI, vol. 10(6), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:2064-:d:153070
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/6/2064/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/6/2064/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Xin & Ge, Yunshan & Yu, Linxiao & Feng, Xiangyu, 2013. "Effects of altitude on the thermal efficiency of a heavy-duty diesel engine," Energy, Elsevier, vol. 59(C), pages 543-548.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen Zhao & Yong Xu, 2019. "Exploring the Spatial Variation Characteristics and Influencing Factors of PM 2.5 Pollution in China: Evidence from 289 Chinese Cities," Sustainability, MDPI, vol. 11(17), pages 1-17, August.
    2. Lin, Ying & Yang, Xiuyun & Li, Yanan & Yao, Shunbo, 2020. "The effect of forest on PM2.5 concentrations: A spatial panel approach," Forest Policy and Economics, Elsevier, vol. 118(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reyes García-Contreras & Andrés Agudelo & Arántzazu Gómez & Pablo Fernández-Yáñez & Octavio Armas & Ángel Ramos, 2019. "Thermoelectric Energy Recovery in a Light-Duty Diesel Vehicle under Real-World Driving Conditions at Different Altitudes with Diesel, Biodiesel and GTL Fuels," Energies, MDPI, vol. 12(6), pages 1-18, March.
    2. Liu, Jinlong & Wang, Bosen & Meng, Zhongwei & Liu, Zhentao, 2023. "An examination of performance deterioration indicators of diesel engines on the plateau," Energy, Elsevier, vol. 262(PB).
    3. Xiangting Wang & Haiqiao Wei & Jiaying Pan & Zhen Hu & Zeyuan Zheng & Mingzhang Pan, 2020. "Analysis of Diesel Knock for High-Altitude Heavy-Duty Engines Using Optical Rapid Compression Machines," Energies, MDPI, vol. 13(12), pages 1-14, June.
    4. Zhang, Zhongjie & Peng, Qikai & Liu, Riulin & Dong, Surong & Zhou, Guangmeng & Liu, Zengyong & Zhao, Xumin & Yang, Chunhao & Wang, Zengquan & Xia, Xu, 2024. "A matching method for Twin-VGT systems under varying expansion ratios at high altitudes," Energy, Elsevier, vol. 289(C).
    5. Lu, Kangbo & Shi, Lei & Zhang, Huiyan & Chen, Ziqiang & Deng, Kangyao, 2023. "Theoretical and experimental study on performance improvement of diesel engines at different altitudes by adaptive regulation method of the two-stage turbocharging system," Energy, Elsevier, vol. 281(C).
    6. Chen, Guisheng & Sun, Min & Li, Junda & Wang, Jiguang & Shen, Yinggang & Liang, Daping & Xiao, Renxin, 2024. "Study on high-altitude ceiling strategy of compression ignition aviation piston engines based on BP-NSGA II algorithm optimization," Energy, Elsevier, vol. 294(C).
    7. Lu, Kangbo & Qiu, Hongjian & Chen, Ziqiang & Shi, Lei & Deng, Kangyao, 2023. "Environmental adaptability method for improving the cold start performance of the diesel engine based on pilot injection strategy," Energy, Elsevier, vol. 281(C).
    8. Chengguan Wang & Xiaozhi Qi & Tao Wang & Diming Lou & Piqiang Tan & Zhiyuan Hu & Liang Fang & Rong Yang, 2023. "Role of Altitude in Influencing the Spray Combustion Characteristics of a Heavy-Duty Diesel Engine in a Constant Volume Combustion Chamber. Part I: Free Diesel Jet," Energies, MDPI, vol. 16(12), pages 1-25, June.
    9. Zhang, Huiyan & Shi, Lei & Deng, Kangyao & Liu, Sheng & Yang, Zhenhuan, 2020. "Experiment investigation on the performance and regulation rule of two-stage turbocharged diesel engine for various altitudes operation," Energy, Elsevier, vol. 192(C).
    10. Yang, Zhenghao & Du, Yang & Gao, Xu & Zhang, Zeqi & Geng, Qi & He, Guangyu, 2024. "Comparative analysis of combustion, thermodynamic and environmental performance of hydrogen-doping X-type rotary engines using single-ignitor and dual-ignitors under high-altitude condition," Energy, Elsevier, vol. 307(C).
    11. Zhipeng Li & Qiang Zhang & Fujun Zhang & Hongbo Liang & Yu Zhang, 2023. "Investigation of Effect of Nozzle Numbers on Diesel Engine Performance Operated at Plateau Environment," Sustainability, MDPI, vol. 15(11), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:2064-:d:153070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.