IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i6p1915-d151269.html
   My bibliography  Save this article

An Original Approach Combining CFD, Linearized Models, and Deformation of Trees for Urban Wind Power Assessment

Author

Listed:
  • Jan Konopka

    (Department of Climatology and Environmental Meteorology, Institute of Geoecology, Technical University of Braunschweig, 38106 Braunschweig, Germany)

  • António Lopes

    (Institute of Geography and Spatial Planning, Center of Geographical Studies (ZEPHYRUS/Climate Change and Environmental Systems Research Group), Universidade de Lisboa. Ed. IGOT, R. Branca Edmée Marques, 1600-276 Lisbon, Portugal)

  • Andreas Matzarakis

    (Faculty of Environmental Sciences and Natural Resources, Albert-Ludwigs-University Freiburg, 79085 Freiburg, Germany
    Research Center Human Biometeorology, German Meteorological Service, 79104 Freiburg, Germany)

Abstract

Wind energy is relevant to self-sufficiency in urban areas, but the accuracy of wind assessment is a barrier to allowing wind energy development. The aim of this work is to test the performance of the Griggs-Putnam Index of Deformity of trees (G-PID) over urban areas as an alternative method for assessing wind conditions. G-PID has been widely used in open terrains, but this work is the first attempt to apply it in urban areas. The results were compared with CFD simulations (ENVI-met), and finally, with the linear model WAsP to inspect if deformed trees can offer acceptable wind power assessments. WAsP (meso-) and ENVI-met (micrometeorological model) showed similar results in a test area inside the University of Lisbon Campus. All trees showed a deformation with the wind direction (S and SE). The mean G-PID wind speed for all trees was 5.9 m/s. Comparing this to the ENVI-met simulations results (mean speed for all trees was 4.25 m/s) made it necessary to adapt the index to urban terrains by reducing each Index Deformation class by about ~2 m/s. Nevertheless, more investigation is needed, since this study is just a first approach to this integrated methodology. Also, tree species and characteristics were not taken into account. These questions should be addressed in future studies, because the deformation of trees depends also on the tree species and phytosanitary conditions.

Suggested Citation

  • Jan Konopka & António Lopes & Andreas Matzarakis, 2018. "An Original Approach Combining CFD, Linearized Models, and Deformation of Trees for Urban Wind Power Assessment," Sustainability, MDPI, vol. 10(6), pages 1-24, June.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:1915-:d:151269
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/6/1915/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/6/1915/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krohn, Søren & Damborg, Steffen, 1999. "On public attitudes towards wind power," Renewable Energy, Elsevier, vol. 16(1), pages 954-960.
    2. Simões, Teresa & Estanqueiro, Ana, 2016. "A new methodology for urban wind resource assessment," Renewable Energy, Elsevier, vol. 89(C), pages 598-605.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Akintayo T. Abolude & Wen Zhou, 2018. "A Comparative Computational Fluid Dynamic Study on the Effects of Terrain Type on Hub-Height Wind Aerodynamic Properties," Energies, MDPI, vol. 12(1), pages 1-14, December.
    2. Chih-Chun Kung & Bruce A. McCarl, 2018. "Sustainable Energy Development under Climate Change," Sustainability, MDPI, vol. 10(9), pages 1-4, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dugstad, Anders & Grimsrud, Kristine & Kipperberg, Gorm & Lindhjem, Henrik & Navrud, Ståle, 2020. "Acceptance of wind power development and exposure – Not-in-anybody's-backyard," Energy Policy, Elsevier, vol. 147(C).
    2. Alexander Vallejo Díaz & Idalberto Herrera Moya & Edwin Garabitos Lara & Cándida K. Casilla Victorino, 2024. "Assessment of Urban Wind Potential and the Stakeholders Involved in Energy Decision-Making," Sustainability, MDPI, vol. 16(4), pages 1-20, February.
    3. Sunak, Yasin & Madlener, Reinhard, 2012. "The Impact of Wind Farms on Property Values: A Geographically Weighted Hedonic Pricing Model," FCN Working Papers 3/2012, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Mar 2013.
    4. Kumar, Indraneel & Tyner, Wallace E. & Sinha, Kumares C., 2016. "Input–output life cycle environmental assessment of greenhouse gas emissions from utility scale wind energy in the United States," Energy Policy, Elsevier, vol. 89(C), pages 294-301.
    5. Borch, Kristian & Munk, Anders K. & Dahlgaard, Vibeke, 2020. "Mapping wind-power controversies on social media: Facebook as a powerful mobilizer of local resistance," Energy Policy, Elsevier, vol. 138(C).
    6. Radünz, William Corrêa & Mattuella, Jussara M. Leite & Petry, Adriane Prisco, 2020. "Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics," Renewable Energy, Elsevier, vol. 152(C), pages 494-515.
    7. Baxter, Jamie & Morzaria, Rakhee & Hirsch, Rachel, 2013. "A case-control study of support/opposition to wind turbines: Perceptions of health risk, economic benefits, and community conflict," Energy Policy, Elsevier, vol. 61(C), pages 931-943.
    8. Hansla, Andre & Gamble, Amelie & Juliusson, Asgeir & Garling, Tommy, 2008. "Psychological determinants of attitude towards and willingness to pay for green electricity," Energy Policy, Elsevier, vol. 36(2), pages 768-774, February.
    9. Walker, Chad & Baxter, Jamie & Ouellette, Danielle, 2015. "Adding insult to injury: The development of psychosocial stress in Ontario wind turbine communities," Social Science & Medicine, Elsevier, vol. 133(C), pages 358-365.
    10. Sebastian Schär & Jutta Geldermann, 2021. "Adopting Multiactor Multicriteria Analysis for the Evaluation of Energy Scenarios," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    11. Haggett, Claire, 2011. "Understanding public responses to offshore wind power," Energy Policy, Elsevier, vol. 39(2), pages 503-510, February.
    12. He, J.Y. & Chan, P.W. & Li, Q.S. & Huang, Tao & Yim, Steve Hung Lam, 2024. "Assessment of urban wind energy resource in Hong Kong based on multi-instrument observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    13. Zerrahn, Alexander & Krekel, Christian, 2015. "Sowing the Wind and Reaping the Whirlwind? The Effect of Wind Turbines on Residential Well-Being," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112956, Verein für Socialpolitik / German Economic Association.
    14. Kontogianni, A. & Tourkolias, Ch. & Skourtos, M. & Damigos, D., 2014. "Planning globally, protesting locally: Patterns in community perceptions towards the installation of wind farms," Renewable Energy, Elsevier, vol. 66(C), pages 170-177.
    15. D׳Souza, Clare & Yiridoe, Emmanuel K., 2014. "Social acceptance of wind energy development and planning in rural communities of Australia: A consumer analysis," Energy Policy, Elsevier, vol. 74(C), pages 262-270.
    16. Harper, Michael & Anderson, Ben & James, Patrick A.B. & Bahaj, AbuBakr S., 2019. "Onshore wind and the likelihood of planning acceptance: Learning from a Great Britain context," Energy Policy, Elsevier, vol. 128(C), pages 954-966.
    17. Ek, Kristina, 2005. "Public and private attitudes towards "green" electricity: the case of Swedish wind power," Energy Policy, Elsevier, vol. 33(13), pages 1677-1689, September.
    18. Antonini, Enrico G.A. & Caldeira, Ken, 2021. "Atmospheric pressure gradients and Coriolis forces provide geophysical limits to power density of large wind farms," Applied Energy, Elsevier, vol. 281(C).
    19. Sarah Jamal Mattar & Mohammad Reza Kavian Nezhad & Michael Versteege & Carlos F. Lange & Brian A. Fleck, 2021. "Validation Process for Rooftop Wind Regime CFD Model in Complex Urban Environment Using an Experimental Measurement Campaign," Energies, MDPI, vol. 14(9), pages 1-19, April.
    20. Zhi Li & Jiuchang Wei & Yue Gurt Ge, 2023. "Local Support for the Corporate New Investment Project: The Roles of Corporate Reputation, Project’s CSR Behavior and Residential Income Level," Asia Pacific Journal of Management, Springer, vol. 40(1), pages 59-85, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:1915-:d:151269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.