IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i6p1898-d150982.html
   My bibliography  Save this article

Writing a Recipe for Teaching Sustainable Food Systems: Lessons from Three University Courses

Author

Listed:
  • Christy Anderson Brekken

    (Department of Applied Economics, Oregon State University, 228 Ballard Extension Hall, Corvallis, OR 97331, USA)

  • Hikaru Hanawa Peterson

    (Department of Applied Economics, University of Minnesota, 231 Ruttan Hall, 1994 Bufford Ave., St. Paul, MN 55108, USA)

  • Robert P. King

    (Department of Applied Economics, University of Minnesota, 231 Ruttan Hall, 1994 Bufford Ave., St. Paul, MN 55108, USA)

  • David Conner

    (Department of Community Development and Applied Economics, University of Vermont, 205H Morrill Hall, Burlington, VT 05405, USA)

Abstract

The sustainability of the food system is at the forefront of academic and policy discussions as we face the challenge of providing food security to a growing population amidst environmental uncertainty and depletion, social disruptions, and structural economic shocks and stresses. Crafting a sustainable and resilient food system requires us to go beyond disciplinary boundaries and broaden critical and creative thinking skills. Recent literature calls for examples of pedagogical transformations from food systems courses to identify successful practices and potential challenges. We offer a recipe for what to teach by framing systems thinking concepts, then discuss how to teach it with five learning activities: deductive case studies, experiential learning, reflective narrative learning, system dynamics simulations and scenarios, and inductive/open-ended case studies, implemented with collaborative group learning, inter/trans-disciplinarity, and instructor-modeled co-learning. Each learning activity is animated with concrete examples from our courses at Oregon State University, University of Minnesota, and University of Vermont, USA. We discuss opportunities and challenges implementing these strategies in light of student, instructor, and institutional expectations and constraints. But the challenge is worth the effort, because food system transformation requires active learners and systemic thinkers as engaged citizens, food system advocates, entrepreneurs, and policy makers.

Suggested Citation

  • Christy Anderson Brekken & Hikaru Hanawa Peterson & Robert P. King & David Conner, 2018. "Writing a Recipe for Teaching Sustainable Food Systems: Lessons from Three University Courses," Sustainability, MDPI, vol. 10(6), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:1898-:d:150982
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/6/1898/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/6/1898/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alastair Brown, 2014. "Adaptation and mitigation," Nature Climate Change, Nature, vol. 4(10), pages 860-860, October.
    2. Alexander, Peter & Brown, Calum & Arneth, Almut & Finnigan, John & Moran, Dominic & Rounsevell, Mark D.A., 2017. "Losses, inefficiencies and waste in the global food system," Agricultural Systems, Elsevier, vol. 153(C), pages 190-200.
    3. A. Arneth & C. Brown & M. D. A. Rounsevell, 2014. "Erratum: Global models of human decision-making for land-based mitigation and adaptation assessment," Nature Climate Change, Nature, vol. 4(8), pages 736-736, August.
    4. A. Arneth & C. Brown & M. D. A. Rounsevell, 2014. "Global models of human decision-making for land-based mitigation and adaptation assessment," Nature Climate Change, Nature, vol. 4(7), pages 550-557, July.
    5. Namrata Chindarkar & Dodo J. Thampapillai, 2018. "Rethinking Teaching of Basic Principles of Economics from a Sustainability Perspective," Sustainability, MDPI, vol. 10(5), pages 1-8, May.
    6. Ryan Galt & Damian Parr & Julia Van Soelen Kim & Jessica Beckett & Maggie Lickter & Heidi Ballard, 2013. "Transformative food systems education in a land-grant college of agriculture: the importance of learner-centered inquiries," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 30(1), pages 129-142, March.
    7. Jonathan A. Foley & Navin Ramankutty & Kate A. Brauman & Emily S. Cassidy & James S. Gerber & Matt Johnston & Nathaniel D. Mueller & Christine O’Connell & Deepak K. Ray & Paul C. West & Christian Balz, 2011. "Solutions for a cultivated planet," Nature, Nature, vol. 478(7369), pages 337-342, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shang, Linmei & Heckelei, Thomas & Gerullis, Maria K. & Börner, Jan & Rasch, Sebastian, 2021. "Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction," Agricultural Systems, Elsevier, vol. 190(C).
    2. Calum Brown & Dave Murray-Rust & Jasper van Vliet & Shah Jamal Alam & Peter H Verburg & Mark D Rounsevell, 2014. "Experiments in Globalisation, Food Security and Land Use Decision Making," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-24, December.
    3. Huber, Robert & Bakker, Martha & Balmann, Alfons & Berger, Thomas & Bithell, Mike & Brown, Calum & Grêt-Regamey, Adrienne & Xiong, Hang & Le, Quang Bao & Mack, Gabriele & Meyfroidt, Patrick & Millingt, 2018. "Representation of decision-making in European agricultural agent-based models," Agricultural Systems, Elsevier, vol. 167(C), pages 143-160.
    4. J. -F. Mercure & H. Pollitt & A. M. Bassi & J. E Vi~nuales & N. R. Edwards, 2015. "Modelling complex systems of heterogeneous agents to better design sustainability transitions policy," Papers 1506.07432, arXiv.org, revised Feb 2016.
    5. F. LeRon Shults & Wesley J. Wildman, 2020. "Human Simulation and Sustainability: Ontological, Epistemological, and Ethical Reflections," Sustainability, MDPI, vol. 12(23), pages 1-16, December.
    6. Kolosz, B.W. & Athanasiadis, I.N. & Cadisch, G. & Dawson, T.P. & Giupponi, C. & Honzák, M. & Martinez-Lopez, J. & Marvuglia, A. & Mojtahed, V. & Ogutu, K.B.Z. & Van Delden, H. & Villa, F. & Balbi, S., 2018. "Conceptual advancement of socio-ecological modelling of ecosystem services for re-evaluating Brownfield land," Ecosystem Services, Elsevier, vol. 33(PA), pages 29-39.
    7. Lintao Liu & Shouchao Yu & Hengjia Zhang & Yong Wang & Chao Liang, 2023. "Analysis of Land Use Change Drivers and Simulation of Different Future Scenarios: Taking Shanxi Province of China as an Example," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    8. Bai, Yuping & Deng, Xiangzheng & Cheng, Yunfei & Hu, Yecui & Zhang, Lijin, 2021. "Exploring regional land use dynamics under shared socioeconomic pathways: A case study in Inner Mongolia, China," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    9. Blanco, Victor & Holzhauer, Sascha & Brown, Calum & Lagergren, Fredrik & Vulturius, Gregor & Lindeskog, Mats & Rounsevell, Mark D.A., 2017. "The effect of forest owner decision-making, climatic change and societal demands on land-use change and ecosystem service provision in Sweden," Ecosystem Services, Elsevier, vol. 23(C), pages 174-208.
    10. Aschemann-Witzel, Jessica & de Hooge, Ilona E. & Almli, Valérie L., 2021. "My style, my food, my waste! Consumer food waste-related lifestyle segments," Journal of Retailing and Consumer Services, Elsevier, vol. 59(C).
    11. Friedman, Nicola & Ormiston, Jarrod, 2022. "Blockchain as a sustainability-oriented innovation?: Opportunities for and resistance to Blockchain technology as a driver of sustainability in global food supply chains," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    12. Huber, Robert & Bartkowski, Bartosz & Brown, Calum & El Benni, Nadja & Feil, Jan-Henning & Grohmann, Pascal & Joormann, Ineke & Leonhardt, Heidi & Mitter, Hermine & Müller, Birgit, 2024. "Farm typologies for understanding farm systems and improving agricultural policy," Agricultural Systems, Elsevier, vol. 213(C).
    13. Kuisma, Miia & Kahiluoto, Helena, 2017. "Biotic resource loss beyond food waste: Agriculture leaks worst," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 129-140.
    14. Mwongera, Caroline & Shikuku, Kelvin M. & Twyman, Jennifer & Läderach, Peter & Ampaire, Edidah & Van Asten, Piet & Twomlow, Steve & Winowiecki, Leigh A., 2017. "Climate smart agriculture rapid appraisal (CSA-RA): A tool for prioritizing context-specific climate smart agriculture technologies," Agricultural Systems, Elsevier, vol. 151(C), pages 192-203.
    15. Jessica Aschemann‐Witzel & Ana Giménez & Alice Grønhøj & Gastón Ares, 2020. "Avoiding household food waste, one step at a time: The role of self‐efficacy, convenience orientation, and the good provider identity in distinct situational contexts," Journal of Consumer Affairs, Wiley Blackwell, vol. 54(2), pages 581-606, June.
    16. Rommel, Jens & Anggraini, Eva, 2018. "Spatially explicit framed field experiments on ecosystem services governance," Ecosystem Services, Elsevier, vol. 34(PB), pages 201-205.
    17. Ascui, Francisco & Ball, Alex & Kahn, Lewis & Rowe, James, 2021. "Is operationalising natural capital risk assessment practicable?," Ecosystem Services, Elsevier, vol. 52(C).
    18. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    19. Meike Weltin & Silke Hüttel, 2023. "Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 315-342, January.
    20. Law, Elizabeth A. & Macchi, Leandro & Baumann, Matthias & Decarre, Julieta & Gavier-Pizarro, Gregorio & Levers, Christian & Mastrangelo, Matías E. & Murray, Francisco & Müller, Daniel & Piquer-Rodrígu, 2021. "Fading opportunities for mitigating agriculture-environment trade-offs in a south American deforestation hotspot," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 262.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:1898-:d:150982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.