IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i6p1864-d150522.html
   My bibliography  Save this article

Assessment of Carbon Storage and Its Influencing Factors in Qinghai-Tibet Plateau

Author

Listed:
  • Zhonghe Zhao

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China
    University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China)

  • Gaohuan Liu

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China)

  • Naixia Mou

    (College of Geomatics, Shandong University of Science and Technology, Qingdao 266510, China)

  • Yichun Xie

    (Institute for Geospatial Research and Education, Eastern Michigan University, Ypsilanti, MI 48197, USA)

  • Zengrang Xu

    (Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Chaoyang District, Beijing 100101, China)

  • Yong Li

    (Guangzhou Institute of Geography, Guangzhou 510070, China)

Abstract

Land use/cover change (LUCC) is one of the major factors influencing the storage of ecosystem carbon. The carbon storage in Qinghai-Tibet Plateau, the world’s highest plateau, is affected by a combination of many factors. Using MCD12Q1 land classification data, aboveground biomass, belowground biomass, soil carbon and humus carbon data, as well as field sampling data for parameters verification, we applied the InVEST model to simulate the ecosystem carbon storage and the impacts of driving factors. The field survey samples were used to test the regression accuracy, and the results confirmed that the model performance was reasonable and acceptable. The main conclusions of this study are as follows: From 2001 to 2010, carbon storage in the Qinghai-Tibet Plateau increased by 10.39 billion t when assuming that the carbon density in each land cover type was constant. Changes of the land cover types caused carbon storage to increase by 116 million t, which contributed 13.82% of the dynamic carbon storage. Consequently, changes in carbon density accounted for 86.18% of the carbon storage change. In addition, we investigated the soil organic matter and aboveground biomass characteristics between 2012 and 2014 and found that the influences of fencing and dung on carbon storage were positive.

Suggested Citation

  • Zhonghe Zhao & Gaohuan Liu & Naixia Mou & Yichun Xie & Zengrang Xu & Yong Li, 2018. "Assessment of Carbon Storage and Its Influencing Factors in Qinghai-Tibet Plateau," Sustainability, MDPI, vol. 10(6), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:1864-:d:150522
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/6/1864/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/6/1864/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Gluck & G. Banko & W. Vrzal, 2000. "Harnessing Remote Sensing to Accomplish Full Carbon Accounting: Workshop Report," Working Papers ir00010, International Institute for Applied Systems Analysis.
    2. Ram Oren & David S. Ellsworth & Kurt H. Johnsen & Nathan Phillips & Brent E. Ewers & Chris Maier & Karina V.R. Schäfer & Heather McCarthy & George Hendrey & Steven G. McNulty & Gabriel G. Katul, 2001. "Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere," Nature, Nature, vol. 411(6836), pages 469-472, May.
    3. Mongelli, I. & Tassielli, G. & Notarnicola, B., 2006. "Global warming agreements, international trade and energy/carbon embodiments: an input-output approach to the Italian case," Energy Policy, Elsevier, vol. 34(1), pages 88-100, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gang Li & Zhi Zhang & Linlu Shi & Yan Zhou & Meng Yang & Jiaxi Cao & Shuhong Wu & Guangchun Lei, 2018. "Effects of Different Grazing Intensities on Soil C, N, and P in an Alpine Meadow on the Qinghai—Tibetan Plateau, China," IJERPH, MDPI, vol. 15(11), pages 1-16, November.
    2. Yafei Wang & Jinfeng Liao & Yao He & Peipei Chen, 2022. "Evolution and Ecological Implications of Land Development and Conservation Patterns on the Qinghai-Tibet Plateau," Land, MDPI, vol. 11(10), pages 1-17, October.
    3. Rong Leng & Quanzhi Yuan & Yushuang Wang & Qian Kuang & Ping Ren, 2020. "Carbon Balance of Grasslands on the Qinghai-Tibet Plateau under Future Climate Change: A Review," Sustainability, MDPI, vol. 12(2), pages 1-21, January.
    4. Jiaji Zhu & Xijun Hu & Wenzhuo Xu & Jianyu Shi & Yihe Huang & Bingwen Yan, 2023. "Regional Carbon Stock Response to Land Use Structure Change and Multi-Scenario Prediction: A Case Study of Hunan Province, China," Sustainability, MDPI, vol. 15(16), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bielsa, Jorge & Cazcarro, Ignacio & Sancho, Yolanda, 2011. "Integration of hydrological and economic approaches to water and land management in Mediterranean climates: an initial case study in agriculture," MPRA Paper 36445, University Library of Munich, Germany.
    2. Boglioni, Michele & Zambelli, Stefano, 2018. "Specialization patterns and reduction of CO2 emissions. An empirical investigation of environmental preservation and economic efficiency," Energy Economics, Elsevier, vol. 75(C), pages 134-149.
    3. Yang, Ranran & Long, Ruyin & Yue, Ting & Shi, Haihong, 2014. "Calculation of embodied energy in Sino-USA trade: 1997–2011," Energy Policy, Elsevier, vol. 72(C), pages 110-119.
    4. Tong Qiu & Robert Andrus & Marie-Claire Aravena & Davide Ascoli & Yves Bergeron & Roberta Berretti & Daniel Berveiller & Michal Bogdziewicz & Thomas Boivin & Raul Bonal & Don C. Bragg & Thomas Caignar, 2022. "Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Liu, Ying & Jayanthakumaran, Kankesu & Neri, Frank, 2013. "Who is responsible for the CO2 emissions that China produces?," Energy Policy, Elsevier, vol. 62(C), pages 1412-1419.
    6. Yueyue Rong & Junsong Jia & Min Ju & Chundi Chen & Yangming Zhou & Yexi Zhong, 2021. "Multi-Perspective Analysis of Household Carbon Dioxide Emissions from Direct Energy Consumption by the Methods of Logarithmic Mean Divisia Index and σ Convergence in Central China," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    7. Muhammad, Shahbaz & Lean, Hooi Hooi & Muhammad, Shahbaz Shabbir, 2011. "Environmental Kuznets Curve and the role of energy consumption in Pakistan," MPRA Paper 34929, University Library of Munich, Germany, revised 22 Nov 2011.
    8. Yuling Sun & Junsong Jia & Min Ju & Chundi Chen, 2022. "Spatiotemporal Dynamics of Direct Carbon Emission and Policy Implication of Energy Transition for China’s Residential Consumption Sector by the Methods of Social Network Analysis and Geographically We," Land, MDPI, vol. 11(7), pages 1-26, July.
    9. Yunfeng, Yan & Laike, Yang, 2010. "China's foreign trade and climate change: A case study of CO2 emissions," Energy Policy, Elsevier, vol. 38(1), pages 350-356, January.
    10. Chen, G.Q. & Zhang, Bo, 2010. "Greenhouse gas emissions in China 2007: Inventory and input-output analysis," Energy Policy, Elsevier, vol. 38(10), pages 6180-6193, October.
    11. Wiedmann, Thomas, 2009. "A first empirical comparison of energy Footprints embodied in trade -- MRIO versus PLUM," Ecological Economics, Elsevier, vol. 68(7), pages 1975-1990, May.
    12. López, Luis Antonio & Arce, Guadalupe & Zafrilla, Jorge Enrique, 2013. "Parcelling virtual carbon in the pollution haven hypothesis," Energy Economics, Elsevier, vol. 39(C), pages 177-186.
    13. Zhang, Bo & Chen, Z.M. & Xia, X.H. & Xu, X.Y. & Chen, Y.B., 2013. "The impact of domestic trade on China's regional energy uses: A multi-regional input–output modeling," Energy Policy, Elsevier, vol. 63(C), pages 1169-1181.
    14. Zhang, Youguo, 2009. "Structural decomposition analysis of sources of decarbonizing economic development in China; 1992-2006," Ecological Economics, Elsevier, vol. 68(8-9), pages 2399-2405, June.
    15. Ramos, Carmen & García, Ana Salomé & Moreno, Blanca & Díaz, Guzmán, 2019. "Small-scale renewable power technologies are an alternative to reach a sustainable economic growth: Evidence from Spain," Energy, Elsevier, vol. 167(C), pages 13-25.
    16. Binkley, Clark S. & Brand, David & Harkin, Zoe & Bull, Gary & Ravindranath, N. H. & Obersteiner, Michael & Nilsson, Sten & Yamagata, Yoshiki & Krott, Max, 2002. "Carbon sink by the forest sector--options and needs for implementation," Forest Policy and Economics, Elsevier, vol. 4(1), pages 65-77, May.
    17. Dong, Di & An, Haizhong & Huang, Shupei, 2017. "The transfer of embodied carbon in copper international trade: An industry chain perspective," Resources Policy, Elsevier, vol. 52(C), pages 173-180.
    18. Kurt Kratena & Ina Meyer, 2010. "CO2 Emissions Embodied in Austrian International Trade," WIFO Studies, WIFO, number 39242, March.
    19. Muhammad, Anees & Ishfaq, Ahmed, 2011. "Industrial development, agricultural growth, urbanization and environmental Kuznets curve in Pakistan," MPRA Paper 33469, University Library of Munich, Germany.
    20. Xin Li & Xiaoqiong He & Xiyu Luo & Xiandan Cui & Minxi Wang, 2020. "Exploring the characteristics and drivers of indirect energy consumption of urban and rural households from a sectoral perspective," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 907-924, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:1864-:d:150522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.