IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i5p1425-d144538.html
   My bibliography  Save this article

An Extended HITS Algorithm on Bipartite Network for Features Extraction of Online Customer Reviews

Author

Listed:
  • Chen Liu

    (Business School, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Li Tang

    (Business School, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Wei Shan

    (School of Economics and Management, Beihang University, Beijing 100191, China)

Abstract

How to acquire useful information intelligently in the age of information explosion has become an important issue. In this context, sentiment analysis emerges with the growth of the need of information extraction. One of the most important tasks of sentiment analysis is feature extraction of entities in consumer reviews. This paper first constitutes a directed bipartite feature-sentiment relation network with a set of candidate features-sentiment pairs that is extracted by dependency syntax analysis from consumer reviews. Then, a novel method called MHITS which combines PMI with weighted HITS algorithm is proposed to rank these candidate product features to find out real product features. Empirical experiments indicate the effectiveness of our approach across different kinds and various data sizes of product. In addition, the effect of the proposed algorithm is not the same for the corpus with different proportions of the word pair that includes the “bad”, “good”, “poor”, “pretty good”, “not bad” these general collocation words.

Suggested Citation

  • Chen Liu & Li Tang & Wei Shan, 2018. "An Extended HITS Algorithm on Bipartite Network for Features Extraction of Online Customer Reviews," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:5:p:1425-:d:144538
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/5/1425/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/5/1425/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Xiaofeng & Zha, Hongyuan & H.Q. Ding, Chris & D. Simon, Horst, 2002. "Web document clustering using hyperlink structures," Computational Statistics & Data Analysis, Elsevier, vol. 41(1), pages 19-45, November.
    2. Gang Ren & Taeho Hong, 2017. "Investigating Online Destination Images Using a Topic-Based Sentiment Analysis Approach," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinhai Liu & Wolfgang Glänzel & Bart De Moor, 2011. "Hybrid clustering of multi-view data via Tucker-2 model and its application," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(3), pages 819-839, September.
    2. Berny Carrera & Jae-Yoon Jung, 2018. "SentiFlow: An Information Diffusion Process Discovery Based on Topic and Sentiment from Online Social Networks," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    3. Ziye Shang & Jian Ming Luo, 2022. "Topic Modeling for Hiking Trail Online Reviews: Analysis of the Mutianyu Great Wall," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    4. Qin Li & Shaobo Li & Jie Hu & Sen Zhang & Jianjun Hu, 2018. "Tourism Review Sentiment Classification Using a Bidirectional Recurrent Neural Network with an Attention Mechanism and Topic-Enriched Word Vectors," Sustainability, MDPI, vol. 10(9), pages 1-15, September.
    5. Hai-Yun Xu & Zeng-Hui Yue & Chao Wang & Kun Dong & Hong-Shen Pang & Zhengbiao Han, 2017. "Multi-source data fusion study in scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 773-792, May.
    6. Xinhai Liu & Wolfgang Glänzel & Bart Moor, 2012. "Optimal and hierarchical clustering of large-scale hybrid networks for scientific mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 473-493, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:5:p:1425-:d:144538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.