Tourism Review Sentiment Classification Using a Bidirectional Recurrent Neural Network with an Attention Mechanism and Topic-Enriched Word Vectors
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Gang Ren & Taeho Hong, 2017. "Investigating Online Destination Images Using a Topic-Based Sentiment Analysis Approach," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Seungju Nam & Hyun Cheol Lee, 2019. "A Text Analytics-Based Importance Performance Analysis and Its Application to Airline Service," Sustainability, MDPI, vol. 11(21), pages 1-24, November.
- Guan, Keqin & Gong, Xu, 2023. "A new hybrid deep learning model for monthly oil prices forecasting," Energy Economics, Elsevier, vol. 128(C).
- Sergei Mikhailov & Alexey Kashevnik, 2020. "Tourist Behaviour Analysis Based on Digital Pattern of Life—An Approach and Case Study," Future Internet, MDPI, vol. 12(10), pages 1-16, September.
- Yuguo Tao & Feng Zhang & Chunyun Shi & Yun Chen, 2019. "Social Media Data-Based Sentiment Analysis of Tourists’ Air Quality Perceptions," Sustainability, MDPI, vol. 11(18), pages 1-23, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Berny Carrera & Jae-Yoon Jung, 2018. "SentiFlow: An Information Diffusion Process Discovery Based on Topic and Sentiment from Online Social Networks," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
- Ziye Shang & Jian Ming Luo, 2022. "Topic Modeling for Hiking Trail Online Reviews: Analysis of the Mutianyu Great Wall," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
- Chen Liu & Li Tang & Wei Shan, 2018. "An Extended HITS Algorithm on Bipartite Network for Features Extraction of Online Customer Reviews," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
More about this item
Keywords
topic model; attention mechanism; lda2vec; BiGRU; sentiment classification; tourism review;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:3313-:d:170239. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.