IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i4p989-d138356.html
   My bibliography  Save this article

Reducing Amazon Deforestation through Agricultural Intensification in the Cerrado for Advancing Food Security and Mitigating Climate Change

Author

Listed:
  • Carlos Eduardo Pellegrino Cerri

    (Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, 11 Pádua Dias Avenue, Piracicaba 13418-900, SP, Brazil)

  • Carlos Clemente Cerri

    (Center for Nuclear Energy in Agriculture, University of São Paulo, 303 Centenário Avenue, Piracicaba 13400-970, SP, Brazil
    In memorian.)

  • Stoécio Malta Ferreira Maia

    (Federal Institute of Education, Science and Technology of Alagoas, Campus Marechal Deodoro, 176 Lourival Alfredo Street, Marechal Deodoro 57160-000, AL, Brazil)

  • Maurício Roberto Cherubin

    (Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, 11 Pádua Dias Avenue, Piracicaba 13418-900, SP, Brazil)

  • Brigitte Josefine Feigl

    (Center for Nuclear Energy in Agriculture, University of São Paulo, 303 Centenário Avenue, Piracicaba 13400-970, SP, Brazil)

  • Rattan Lal

    (Carbon Management and Sequestration Center, SENR/FAES, The Ohio State University, 422B Kottman Hall, 2021 Coffey Rd, Columbus, OH 43201, USA)

Abstract

Important among global issues is the trilemma of abrupt climate change, food insecurity, and environmental degradation. Despite the increasing use of fossil fuel, about one third of global C emissions come from tropical deforestation and indiscriminate use of agricultural practices. Global food insecurity, affecting one in seven persons, aggravates environmental degradation. The importance of judicious land use and soil sustainability in addressing the trilemma cannot be overemphasized. While intensifying agronomic production on existing land, it is also essential to identify suitable eco-regions for bringing new land under production. Based on 35-years of data from Brazil, we report that C emissions from agroecosystems are 4 to 5.5 times greater by bringing new land under production in Amazon than in the Cerrado for pastures and cropland production, respectively. The data presented indicate that agricultural intensification is feasible in the Cerrado, and the forest in Rondônia and Mato Grosso states must be protected and restored for nature conservancy. Now is the time to think beyond COP 21—Paris 2015 and take concrete actions to address these issues of global significance.

Suggested Citation

  • Carlos Eduardo Pellegrino Cerri & Carlos Clemente Cerri & Stoécio Malta Ferreira Maia & Maurício Roberto Cherubin & Brigitte Josefine Feigl & Rattan Lal, 2018. "Reducing Amazon Deforestation through Agricultural Intensification in the Cerrado for Advancing Food Security and Mitigating Climate Change," Sustainability, MDPI, vol. 10(4), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:4:p:989-:d:138356
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/4/989/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/4/989/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mariana Regina Durigan & Maurício Roberto Cherubin & Plínio Barbosa De Camargo & Joice Nunes Ferreira & Erika Berenguer & Toby Alan Gardner & Jos Barlow & Carlos Tadeu dos Santos Dias & Diana Signor &, 2017. "Soil Organic Matter Responses to Anthropogenic Forest Disturbance and Land Use Change in the Eastern Brazilian Amazon," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
    2. Maurício R Cherubin & Douglas L Karlen & Carlos E P Cerri & André L C Franco & Cássio A Tormena & Christian A Davies & Carlos C Cerri, 2016. "Soil Quality Indexing Strategies for Evaluating Sugarcane Expansion in Brazil," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-26, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laibach, Natalie & Börner, Jan & Bröring, Stefanie, 2019. "Exploring the future of the bioeconomy: An expert-based scoping study examining key enabling technology fields with potential to foster the transition toward a bio-based economy," Technology in Society, Elsevier, vol. 58(C).
    2. Xinhai Lu & Yanwei Zhang & Chaoran Lin & Feng Wu, 2021. "Evolutionary Overview and Prediction of Themes in the Field of Land Degradation," Land, MDPI, vol. 10(3), pages 1-23, March.
    3. Júlia Graziela da Silveira & Sílvio Nolasco de Oliveira Neto & Ana Carolina Barbosa do Canto & Fernanda Figueiredo Granja Dorilêo Leite & Fernanda Reis Cordeiro & Luís Tadeu Assad & Gabriela Cristina , 2022. "Land Use, Land Cover Change and Sustainable Intensification of Agriculture and Livestock in the Amazon and the Atlantic Forest in Brazil," Sustainability, MDPI, vol. 14(5), pages 1-23, February.
    4. de Area Leão Pereira, Eder Johnson & de Santana Ribeiro, Luiz Carlos & da Silva Freitas, Lúcio Flávio & de Barros Pereira, Hernane Borges, 2020. "Brazilian policy and agribusiness damage the Amazon rainforest," Land Use Policy, Elsevier, vol. 92(C).
    5. Yohanis Ngongo & Bernard deRosari & Tony Basuki & Gerson Ndawa Njurumana & Yudistira Nugraha & Alfonsus Hasudungan Harianja & Mohammad Ardha & Kustiyo Kustiyo & Rizatus Shofiyati & Raden Bambang Herya, 2023. "Land Cover Change and Food Security in Central Sumba: Challenges and Opportunities in the Decentralization Era in Indonesia," Land, MDPI, vol. 12(5), pages 1-23, May.
    6. Enzo Ferrari & Anne-Marie Ballegeer & Miguel Angel Fuertes & Pablo Herrero & Laura Delgado & Diego Corrochano & Santiago Andrés-Sánchez & Kylyan Marc Bisquert & Antonio Garcia-Vinuesa & Pablo Meira & , 2019. "Improvement on Social Representation of Climate Change through a Knowledge-Based MOOC in Spanish," Sustainability, MDPI, vol. 11(22), pages 1-21, November.
    7. Anastasia Zabaniotou & Christine Syrgiannis & Daniela Gasperin & Arnoldo José de Hoyos Guevera & Ivani Fazenda & Donald Huisingh, 2020. "From Multidisciplinarity to Transdisciplinarity and from Local to Global Foci: Integrative Approaches to Systemic Resilience Based upon the Value of Life in the Context of Environmental and Gender Vul," Sustainability, MDPI, vol. 12(20), pages 1-32, October.
    8. David López-Carr, 2021. "A Review of Small Farmer Land Use and Deforestation in Tropical Forest Frontiers: Implications for Conservation and Sustainable Livelihoods," Land, MDPI, vol. 10(11), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Turetta, Ana Paula Dias & Kuyper, Thomas & Malheiros, Tadeu Fabrício & Coutinho, Heitor Luiz da Costa, 2017. "A framework proposal for sustainability assessment of sugarcane in Brazil," Land Use Policy, Elsevier, vol. 68(C), pages 597-603.
    2. Maurício Roberto Cherubin & João Luís Nunes Carvalho & Carlos Eduardo Pellegrino Cerri & Luiz Augusto Horta Nogueira & Glaucia Mendes Souza & Heitor Cantarella, 2021. "Land Use and Management Effects on Sustainable Sugarcane-Derived Bioenergy," Land, MDPI, vol. 10(1), pages 1-24, January.
    3. Laís Coutinho Zayas Jimenez & Hermano Melo Queiroz & Maurício Roberto Cherubin & Tiago Osório Ferreira, 2022. "Applying the Soil Management Assessment Framework (SMAF) to Assess Mangrove Soil Quality," Sustainability, MDPI, vol. 14(5), pages 1-12, March.
    4. Camila Viana Vieira Farhate & Zigomar Menezes de Souza & Maurício Roberto Cherubin & Lenon Herique Lovera & Ingrid Nehmi de Oliveira & Marina Pedroso Carneiro & Newton La Scala Jr., 2020. "Abiotic Soil Health Indicators that Respond to Sustainable Management Practices in Sugarcane Cultivation," Sustainability, MDPI, vol. 12(22), pages 1-19, November.
    5. Shahmir Ali Kalhoro & Xuexuan Xu & Wenyuan Chen & Rui Hua & Sajjad Raza & Kang Ding, 2017. "Effects of Different Land-Use Systems on Soil Aggregates: A Case Study of the Loess Plateau (Northern China)," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
    6. Ying-Qiang Song & Lian-An Yang & Bo Li & Yue-Ming Hu & An-Le Wang & Wu Zhou & Xue-Sen Cui & Yi-Lun Liu, 2017. "Spatial Prediction of Soil Organic Matter Using a Hybrid Geostatistical Model of an Extreme Learning Machine and Ordinary Kriging," Sustainability, MDPI, vol. 9(5), pages 1-17, May.
    7. Otávio dos Anjos Leal & Nicasio T. Jiménez-Morillo & José A. González-Pérez & Heike Knicker & Falberni de Souza Costa & Pedro N. Jiménez-Morillo & João Andrade de Carvalho Júnior & José Carlos dos San, 2023. "Soil Organic Matter Molecular Composition Shifts Driven by Forest Regrowth or Pasture after Slash-and-Burn of Amazon Forest," IJERPH, MDPI, vol. 20(4), pages 1-16, February.
    8. Silva-Olaya, Adriana M. & Ortíz-Morea, Fausto A. & España-Cetina, Gina P. & Olaya-Montes, Andrés & Grados, Daniel & Gasparatos, Alexandros & Cherubin, Mauricio Roberto, 2022. "Composite index for soil-related ecosystem services assessment: Insights from rainforest-pasture transitions in the Colombian Amazon," Ecosystem Services, Elsevier, vol. 57(C).
    9. Sophia Dobkowitz & Ariane Walz & Gabriele Baroni & Aldrin M. Pérez-Marin, 2020. "Cross-Scale Vulnerability Assessment for Smallholder Farming: A Case Study from the Northeast of Brazil," Sustainability, MDPI, vol. 12(9), pages 1-24, May.
    10. Zakir Hussain & Limei Deng & Xuan Wang & Rongyang Cui & Gangcai Liu, 2022. "A Review of Farmland Soil Health Assessment Methods: Current Status and a Novel Approach," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    11. Oliveira, Dener M.S. & Cherubin, Maurício R. & Franco, André L.C. & Santos, Augusto S. & Gelain, Jaquelini G. & Dias, Naissa M.S. & Diniz, Tatiana R. & Almeida, Alexandre N. & Feigl, Brigitte J. & Dav, 2019. "Is the expansion of sugarcane over pasturelands a sustainable strategy for Brazil's bioenergy industry?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 346-355.
    12. Lyndré Nel & Ana Flávia Boeni & Viola Judit Prohászka & Alfréd Szilágyi & Eszter Tormáné Kovács & László Pásztor & Csaba Centeri, 2022. "InVEST Soil Carbon Stock Modelling of Agricultural Landscapes as an Ecosystem Service Indicator," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    13. Jianfei Shi & Wenting Qian & Zhibin Zhou & Zhengzhong Jin & Xinwen Xu, 2023. "Influence of Acid Mine Drainage Leakage from Tailings Ponds on the Soil Quality of Desert Steppe in the Northwest Arid Region of China," Land, MDPI, vol. 12(2), pages 1-17, February.
    14. Oliveira, Ingrid Nehmi de & de Souza, Zigomar Menezes & Lovera, Lenon Henrique & Farhate, Camila Viana Vieira & Lima, Elizeu de Souza & Esteban, Diego Alexander Aguilera & Totti, Maria Cecilia Vieira, 2020. "Capacitance probe calibration for an Ultisol Udult cultivated with sugarcane by soil tillages," Agricultural Water Management, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:4:p:989-:d:138356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.