IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i3p604-d133723.html
   My bibliography  Save this article

Rheological Behaviour of a Bitumen Modified with Metal Oxides Obtained by Regeneration Processes

Author

Listed:
  • Tullio Giuffrè

    (Faculty of Engineering and Architecture, University of Enna Kore, Viale delle Olimpiadi, 94100 Enna, Italy)

  • Marco Morreale

    (Faculty of Engineering and Architecture, University of Enna Kore, Viale delle Olimpiadi, 94100 Enna, Italy)

  • Giovanni Tesoriere

    (Faculty of Engineering and Architecture, University of Enna Kore, Viale delle Olimpiadi, 94100 Enna, Italy)

  • Salvatore Trubia

    (Faculty of Engineering and Architecture, University of Enna Kore, Viale delle Olimpiadi, 94100 Enna, Italy)

Abstract

Nowadays, one important challenge is to demonstrate an innovative and integrated approach for the sustainable construction of roads considering the whole life cycle of the infrastructure. Road pavements with multiple asphalt layers generally undergo prolonged environmental exposure and the alternation between solar irradiation and low temperatures. As a result, relaxation or progressive removal of the material with a negative impact on the resistance to plastic deformation occur, also leading to the formation of slits and to dimensional variations, which are commonly defined as thermal cracking. This suggests the use of suitable bitumen modifiers. For these, important parameters are the optimal mixing time and mixing temperature, in order to reduce problems related to the stability of the bitumen. Therefore, the behaviour, upon changing the temperature, of bituminous mixtures containing (as fillers) a series of metal oxides coming, as secondary products, from spent acid solutions regeneration processes, was investigated. This is intended in order to recover and reuse those otherwise dangerous wastes coming from several industrial (especially, metallurgical) processes. The study was aimed at evaluating the properties of bituminous blends by performing rheological tests under dynamic shear regime. More specifically, five different bitumen matrices were prepared (70/100 bitumen and blends with metal oxides and/or SBS copolymer). Results showed that the addition of iron oxides leads to an increase of the softening point and the complex modulus. The increase is even more emphasized when SBS is added to the blend.

Suggested Citation

  • Tullio Giuffrè & Marco Morreale & Giovanni Tesoriere & Salvatore Trubia, 2018. "Rheological Behaviour of a Bitumen Modified with Metal Oxides Obtained by Regeneration Processes," Sustainability, MDPI, vol. 10(3), pages 1-11, February.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:604-:d:133723
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/3/604/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/3/604/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laura Moretti & Vittorio Mandrone & Antonio D’Andrea & Silvia Caro, 2017. "Comparative “from Cradle to Gate” Life Cycle Assessments of Hot Mix Asphalt (HMA) Materials," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongchun Cheng & Wensheng Wang & Guojin Tan & Chenglin Shi, 2018. "Assessing High- and Low-Temperature Properties of Asphalt Pavements Incorporating Waste Oil Shale as an Alternative Material in Jilin Province, China," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    2. Mohammad S. M. Almulhim & Dexter V. L. Hunt & Chris D. F. Rogers, 2020. "A Resilience and Environmentally Sustainable Assessment Framework (RESAF) for Domestic Building Materials in Saudi Arabia," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    3. Giuseppe Cantisani & Paola Di Mascio & Laura Moretti, 2018. "Comparative Life Cycle Assessment of Lighting Systems and Road Pavements in an Italian Twin-Tube Road Tunnel," Sustainability, MDPI, vol. 10(11), pages 1-18, November.
    4. Diana Carolina Gámez-García & José Manuel Gómez-Soberón & Ramón Corral-Higuera & Héctor Saldaña-Márquez & María Consolación Gómez-Soberón & Susana Paola Arredondo-Rea, 2018. "A Cradle to Handover Life Cycle Assessment of External Walls: Choice of Materials and Prognosis of Elements," Sustainability, MDPI, vol. 10(8), pages 1-24, August.
    5. Eduardo Cejuela & Vicente Negro & Jose María del Campo, 2020. "Evaluation and Optimization of the Life Cycle in Maritime Works," Sustainability, MDPI, vol. 12(11), pages 1-20, June.
    6. Giuseppe Loprencipe & Antonio Pantuso & Paola Di Mascio, 2017. "Sustainable Pavement Management System in Urban Areas Considering the Vehicle Operating Costs," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
    7. Valentín Molina-Moreno & Juan Carlos Leyva-Díaz & Jorge Sánchez-Molina & Antonio Peña-García, 2017. "Proposal to Foster Sustainability through Circular Economy-Based Engineering: A Profitable Chain from Waste Management to Tunnel Lighting," Sustainability, MDPI, vol. 9(12), pages 1-9, December.
    8. Giampiero Trunzo & Laura Moretti & Antonio D’Andrea, 2019. "Life Cycle Analysis of Road Construction and Use," Sustainability, MDPI, vol. 11(2), pages 1-13, January.
    9. Antonio Peña-García & Ferdinando Salata & Iacopo Golasi, 2019. "Decrease of the Maximum Speed in Highway Tunnels as a Measure to Foster Energy Savings and Sustainability," Energies, MDPI, vol. 12(4), pages 1-11, February.
    10. Shih-Hsien Yang & Jack Yen Hung Liu & Nam Hoai Tran, 2018. "Multi-Criteria Life Cycle Approach to Develop Weighting of Sustainability Indicators for Pavement," Sustainability, MDPI, vol. 10(7), pages 1-18, July.
    11. Laura Moretti & Paola Di Mascio & Simona Bellagamba, 2017. "Environmental, Human Health and Socio-Economic Effects of Cement Powders: The Multicriteria Analysis as Decisional Methodology," IJERPH, MDPI, vol. 14(6), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:604-:d:133723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.