IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i2p453-d131089.html
   My bibliography  Save this article

Eco-Efficiency Evaluation of Regional Circular Economy: A Case Study in Zengcheng, Guangzhou

Author

Listed:
  • Wei Liu

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Jinyan Zhan

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Zhihui Li

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    Center for Chinese Agricultural Policy, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Siqi Jia

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    Center for Chinese Agricultural Policy, Chinese Academy of Sciences, Beijing 100101, China
    Faculty of Social Science, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China)

  • Fan Zhang

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Yifan Li

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China)

Abstract

Circular economies are critical for alleviating resource pressure and improving environmental quality at regional level. Emergy analysis and eco-efficiency evaluations play important roles in measuring regional eco-efficiency and providing supporting information for governmental decision-making. In this study, emergy analysis and input–output analysis were applied to analyze the changes in emergy structure, functional efficiency, and sustainable development capacity of Zengcheng, Guangzhou during the period 2000–2016. The results showed that the proportion of non-renewable emergy in total emergy structure of Zengcheng increased from 55% to 75%, which placed a greater environmental load on the natural ecosystem and gradually weakened the capacity for sustainable development. The rates of emergy utilization and eco-efficiency both showed increasing trends. All indicators about eco-efficiency showed the development of Zengcheng heavily relied on emergy consumption, especially on non-renewable emergy. The relationship between emergy utilization and socio-economic development of Zengcheng can provide decision-making support for economic structure optimization and sustainable community development.

Suggested Citation

  • Wei Liu & Jinyan Zhan & Zhihui Li & Siqi Jia & Fan Zhang & Yifan Li, 2018. "Eco-Efficiency Evaluation of Regional Circular Economy: A Case Study in Zengcheng, Guangzhou," Sustainability, MDPI, vol. 10(2), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:453-:d:131089
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/2/453/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/2/453/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lou, Bo & Ulgiati, Sergio, 2013. "Identifying the environmental support and constraints to the Chinese economic growth—An application of the Emergy Accounting method," Energy Policy, Elsevier, vol. 55(C), pages 217-233.
    2. Su, Meirong & Fath, Brian D. & Yang, Zhifeng & Chen, Bin & Liu, Gengyuan, 2013. "Ecosystem health pattern analysis of urban clusters based on emergy synthesis: Results and implication for management," Energy Policy, Elsevier, vol. 59(C), pages 600-613.
    3. Blancard, Stéphane & Hoarau, Jean-François, 2013. "A new sustainable human development indicator for small island developing states: A reappraisal from data envelopment analysis," Economic Modelling, Elsevier, vol. 30(C), pages 623-635.
    4. Chen, Shaoqing & Chen, Bin, 2012. "Sustainability and future alternatives of biogas-linked agrosystem (BLAS) in China: An emergy synthesis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3948-3959.
    5. Ricardo Enrique Vega-Azamar & Rabindranarth Romero-López & Norma Angélica Oropeza-García & Mathias Glaus & Robert Hausler & Herlinda Del Socorro Silva-Poot, 2017. "Emergy Evaluation of Dwelling Operation in Five Housing Units of Montreal Island, Canada," Sustainability, MDPI, vol. 9(4), pages 1-16, April.
    6. Brown, Mark T. & Ulgiati, Sergio, 2010. "Updated evaluation of exergy and emergy driving the geobiosphere: A review and refinement of the emergy baseline," Ecological Modelling, Elsevier, vol. 221(20), pages 2501-2508.
    7. Shiyi Chen & Amelia U. Santos-Paulino, 2013. "Energy Consumption and Carbon Emission Based Industrial Productivity in China: A Sustainable Development Analysis," Review of Development Economics, Wiley Blackwell, vol. 17(4), pages 644-661, November.
    8. Falkowski, Tomasz B. & Martinez-Bautista, Isaias & Diemont, Stewart A.W., 2015. "How valuable could traditional ecological knowledge education be for a resource-limited future?: An emergy evaluation in two Mexican villages," Ecological Modelling, Elsevier, vol. 300(C), pages 40-49.
    9. Liu, Gengyuan & Yang, Zhifeng & Chen, Bin & Ulgiati, Sergio, 2014. "Emergy-based dynamic mechanisms of urban development, resource consumption and environmental impacts," Ecological Modelling, Elsevier, vol. 271(C), pages 90-102.
    10. Liu, Xinyu & Liu, Gengyuan & Yang, Zhifeng & Chen, Bin & Ulgiati, Sergio, 2016. "Comparing national environmental and economic performances through emergy sustainability indicators: Moving environmental ethics beyond anthropocentrism toward ecocentrism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1532-1542.
    11. Gengyuan Liu & Mark T. Brown & Marco Casazza, 2017. "Enhancing the Sustainability Narrative through a Deeper Understanding of Sustainable Development Indicators," Sustainability, MDPI, vol. 9(6), pages 1-19, June.
    12. Zengwei Yuan & Jun Bi & Yuichi Moriguichi, 2006. "The Circular Economy: A New Development Strategy in China," Journal of Industrial Ecology, Yale University, vol. 10(1‐2), pages 4-8, January.
    13. Willi Haas & Fridolin Krausmann & Dominik Wiedenhofer & Markus Heinz, 2015. "How Circular is the Global Economy?: An Assessment of Material Flows, Waste Production, and Recycling in the European Union and the World in 2005," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 765-777, October.
    14. Chen, Shaoqing & Chen, Bin, 2014. "Energy efficiency and sustainability of complex biogas systems: A 3-level emergetic evaluation," Applied Energy, Elsevier, vol. 115(C), pages 151-163.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Can & Su, Bo & Beckmann, Michael & Volk, Martin, 2024. "Emergy-based evaluation of ecosystem services: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Lanying Sun & Changhao Su & Xinghui Xian, 2020. "Assessing the Sustainability of China’s Basic Pension Funding for Urban and Rural Residents," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    3. Zhe Zhao & Yuping Bai & Xiangzheng Deng & Jiancheng Chen & Jian Hou & Zhihui Li, 2020. "Changes in Livestock Grazing Efficiency Incorporating Grassland Productivity: The Case of Hulun Buir, China," Land, MDPI, vol. 9(11), pages 1-13, November.
    4. Chanhoon Jung & Chanwoo Kim & Solhee Kim & Kyo Suh, 2018. "Analysis of Environmental Carrying Capacity with Emergy Perspective of Jeju Island," Sustainability, MDPI, vol. 10(5), pages 1-12, May.
    5. Wanxin He & Jianhua Fu & Youxi Luo, 2023. "A Study of Well-Being-Based Eco-efficiency Based on Super-SBM and Tobit Regression Model: The Case of China," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 167(1), pages 289-317, June.
    6. María Jesús Ávila-Gutiérrez & Alejandro Martín-Gómez & Francisco Aguayo-González & Juan Ramón Lama-Ruiz, 2020. "Eco-Holonic 4.0 Circular Business Model to Conceptualize Sustainable Value Chain towards Digital Transition," Sustainability, MDPI, vol. 12(5), pages 1-32, March.
    7. Yu Liu & Chen Zeng & Huatai Cui & Yanhua Song, 2018. "Sustainable Land Urbanization and Ecological Carrying Capacity: A Spatially Explicit Perspective," Sustainability, MDPI, vol. 10(9), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Hengyu & Geng, Yong & Jiang, Ping & Dong, Huijuan & Sun, Lu & Wu, Rui, 2018. "An emergy based sustainability evaluation on a combined landfill and LFG power generation system," Energy, Elsevier, vol. 143(C), pages 310-322.
    2. Liu, Xinyu & Liu, Gengyuan & Yang, Zhifeng & Chen, Bin & Ulgiati, Sergio, 2016. "Comparing national environmental and economic performances through emergy sustainability indicators: Moving environmental ethics beyond anthropocentrism toward ecocentrism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1532-1542.
    3. Junxue Zhang & Lin Ma, 2021. "Urban ecological security dynamic analysis based on an innovative emergy ecological footprint method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16163-16191, November.
    4. Zhang, XiaoHong & Cao, Jun & Li, JinRong & Deng, ShiHuai & Zhang, YanZong & Wu, Jun, 2015. "Influence of sewage treatment on China׳s energy consumption and economy and its performances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1009-1018.
    5. Jacopo Zotti & Andrea Bigano, 2019. "Write circular economy, read economy’s circularity. How to avoid going in circles," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(2), pages 629-652, July.
    6. Chembessi Chedrak & Gohoungodji Paulin & Juste Rajaonson, 2023. "“A fine wine, better with age”: Circular economy historical roots and influential publications: A bibliometric analysis using Reference Publication Year Spectroscopy (RPYS)," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1593-1612, December.
    7. Georgios Lanaras-Mamounis & Anastasios Kipritsis & Thomas A. Tsalis & Konstantinos Ι. Vatalis & Ioannis E. Nikolaou, 2022. "A Framework for Assessing the Contribution of Firms to Circular Economy: a Triple-Level Approach," Circular Economy and Sustainability, Springer, vol. 2(3), pages 883-902, September.
    8. Zhang, Xiaohong & Qi, Yan & Wang, Yanqing & Wu, Jun & Lin, Lili & Peng, Hong & Qi, Hui & Yu, Xiaoyu & Zhang, Yanzong, 2016. "Effect of the tap water supply system on China's economy and energy consumption, and its emissions’ impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 660-671.
    9. Zhang, XiaoHong & Wei, Ye & Li, Min & Deng, ShiHuai & Wu, Jun & Zhang, YanZong & Xiao, Hong, 2014. "Emergy evaluation of an integrated livestock wastewater treatment system," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 95-107.
    10. Arru, Brunella & Furesi, Roberto & Pulina, Pietro & Sau, Paola & Madau, Fabio A., 2022. "The Circular Economy in the Agri-food system: A Performance Measurement of European Countries," Economia agro-alimentare / Food Economy, Italian Society of Agri-food Economics/Società Italiana di Economia Agro-Alimentare (SIEA), vol. 24(2), September.
    11. Zhang, Can & Su, Bo & Beckmann, Michael & Volk, Martin, 2024. "Emergy-based evaluation of ecosystem services: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    12. Geng, Yong & Tian, Xu & Sarkis, Joseph & Ulgiati, Sergio, 2017. "China-USA Trade: Indicators for Equitable and Environmentally Balanced Resource Exchange," Ecological Economics, Elsevier, vol. 132(C), pages 245-254.
    13. Evariste Rutebuka & Lixiao Zhang & Ernest Frimpong Asamoah & Mingyue Pang & Emmanuel Rukundo, 2018. "Resource Dynamism of the Rwandan Economy: An Emergy Approach," Sustainability, MDPI, vol. 10(6), pages 1-19, May.
    14. Amalia Rodrigo-González & Alfredo Grau-Grau & Inmaculada Bel-Oms, 2021. "Circular Economy and Value Creation: Sustainable Finance with a Real Options Approach," Sustainability, MDPI, vol. 13(14), pages 1-30, July.
    15. Marco Casazza & Francesco Gonella & Gengyuan Liu & Antonio Proto & Renato Passaro, 2021. "Physical Constraints on Global Social-Ecological Energy System," Energies, MDPI, vol. 14(23), pages 1-25, December.
    16. E. Sardianou & V. Nikou & K. Evangelinos & I. Nikolaou, 2024. "What are the key dimensions that CE emphasizes on? A systematic analysis of circular economy definitions," Environment Systems and Decisions, Springer, vol. 44(3), pages 547-562, September.
    17. Yang, Jin & Chen, Bin, 2016. "Emergy-based sustainability evaluation of wind power generation systems," Applied Energy, Elsevier, vol. 177(C), pages 239-246.
    18. Yu Zhao & Miao Yu & Yinghui Xiang & Chunguang Chang, 2023. "An approach to stimulate the sustainability of an eco-industrial park using coupled emergy and system dynamics," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11531-11556, October.
    19. Wu, X.F. & Chen, G.Q. & Wu, X.D. & Yang, Q. & Alsaedi, A. & Hayat, T. & Ahmad, B., 2015. "Renewability and sustainability of biogas system: Cosmic exergy based assessment for a case in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1509-1524.
    20. Yang, Dewei & Kao, William Tze Ming & Zhang, Guoqin & Zhang, Nanyang, 2014. "Evaluating spatiotemporal differences and sustainability of Xiamen urban metabolism using emergy synthesis," Ecological Modelling, Elsevier, vol. 272(C), pages 40-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:453-:d:131089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.