IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i12p4544-d187171.html
   My bibliography  Save this article

Eco-Efficiency Evaluation of Agricultural Production in the EU-28

Author

Listed:
  • Magdalena Rybaczewska-Błażejowska

    (Department of Production Engineering, Kielce University of Technology, Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland)

  • Wacław Gierulski

    (Department of Production Engineering, Kielce University of Technology, Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland)

Abstract

This paper evaluates the eco-efficiency performance of agriculture at the sector level using the joint application of life cycle assessment (LCA) and data envelopment analysis (DEA) techniques. The research has been performed for the agricultural production of the 28 member states of the European Union (the EU-28). The foundation for the calculation of the eco-efficiency performance was a statistically selected set of impact categories derived from the life cycle impact assessment (LCIA) phase as input values and economic indicators, with the gross domestic product (GDP) of their agriculture as the output value. The results of the analysis showed that the agricultural sectors of 10 member states of the European Union (i.e., Belgium, Bulgaria, Estonia, Finland, Greece, Italy, Malta, the Netherlands, Romania, and Sweden) are relatively eco-efficient. The remaining 18 member states of the EU-28 have eco-inefficient agricultural sectors, though to a varying extent. This means that their agricultural sectors consume too many natural resources (in particular, energy), use too much fertilizer, and produce considerable amounts of airborne emissions in relation to the current level of GDP per hectare. These insights into the eco-efficiency performance of agriculture in the EU-28 may contribute to the adoption of better management techniques and more effective agricultural policies.

Suggested Citation

  • Magdalena Rybaczewska-Błażejowska & Wacław Gierulski, 2018. "Eco-Efficiency Evaluation of Agricultural Production in the EU-28," Sustainability, MDPI, vol. 10(12), pages 1-21, December.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4544-:d:187171
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/12/4544/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/12/4544/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Bing & Bi, Jun & Fan, Ziying & Yuan, Zengwei & Ge, Junjie, 2008. "Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach," Ecological Economics, Elsevier, vol. 68(1-2), pages 306-316, December.
    2. Mouron, Patrik & Scholz, Roland W. & Nemecek, Thomas & Weber, Olaf, 2006. "Life cycle management on Swiss fruit farms: Relating environmental and income indicators for apple-growing," Ecological Economics, Elsevier, vol. 58(3), pages 561-578, June.
    3. Dyckhoff, H. & Allen, K., 2001. "Measuring ecological efficiency with data envelopment analysis (DEA)," European Journal of Operational Research, Elsevier, vol. 132(2), pages 312-325, July.
    4. Lewin, Arie Y & Morey, Richard C & Cook, Thomas J, 1982. "Evaluating the administrative efficiency of courts," Omega, Elsevier, vol. 10(4), pages 401-411.
    5. Timo Kuosmanen & Mika Kortelainen, 2005. "Measuring Eco‐efficiency of Production with Data Envelopment Analysis," Journal of Industrial Ecology, Yale University, vol. 9(4), pages 59-72, October.
    6. Jiaxing Pang & Xingpeng Chen & Zilong Zhang & Hengji Li, 2016. "Measuring Eco-Efficiency of Agriculture in China," Sustainability, MDPI, vol. 8(4), pages 1-15, April.
    7. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    8. Basset-Mens, Claudine & Ledgard, Stewart & Boyes, Mark, 2009. "Eco-efficiency of intensification scenarios for milk production in New Zealand," Ecological Economics, Elsevier, vol. 68(6), pages 1615-1625, April.
    9. Vlontzos, G. & Pardalos, P.M., 2017. "Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 155-162.
    10. Godard, Caroline & Bamière, Laure & Debove, Elodie & De Cara, Stéphane & Jayet, Pierre-Alain & Niang, N.B., 2005. "Interface between Agriculture and the Environment: Integrating Yield Response Functions in an Economic Model of EU Agriculture," 89th Seminar, February 2-5, 2005, Parma, Italy 232663, European Association of Agricultural Economists.
    11. George Vlontzos & Spyros Niavis & Panos Pardalos, 2017. "Testing for Environmental Kuznets Curve in the EU Agricultural Sector through an Eco-(in)Efficiency Index," Energies, MDPI, vol. 10(12), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonidas Sotirios Kyrgiakos & George Vlontzos & Panos M. Pardalos, 2021. "Ranking EU Agricultural Sectors under the Prism of Alternative Widths on Window DEA," Energies, MDPI, vol. 14(4), pages 1-26, February.
    2. Marlena Gołaś & Piotr Sulewski & Adam Wąs & Anna Kłoczko-Gajewska & Kinga Pogodzińska, 2020. "On the Way to Sustainable Agriculture—Eco-Efficiency of Polish Commercial Farms," Agriculture, MDPI, vol. 10(10), pages 1-24, September.
    3. Junya Yamasaki & Toshiharu Ikaga & Norihiro Itsubo, 2019. "Eco-Efficiency Assessment of Japanese Municipalities Based on Environmental Impacts and Gross Regional Product," Sustainability, MDPI, vol. 11(15), pages 1-21, July.
    4. Han, Yonghui & Zhang, Fan & Huang, Liangxiong & Peng, Keming & Wang, Xianbin, 2021. "Does industrial upgrading promote eco-efficiency? ─A panel space estimation based on Chinese evidence," Energy Policy, Elsevier, vol. 154(C).
    5. Piotr Borawski & Beata Kalinowska & Bartosz Mickiewicz & Andrzej Parzonko & Bogdan Klepacki & James Willam Dunn, 2021. "Changes in the Milk Market in the United States on the Background of the European Union and the World," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 1), pages 1010-1033.
    6. Edward Majewski & Anna Komerska & Jerzy Kwiatkowski & Agata Malak-Rawlikowska & Adam Wąs & Piotr Sulewski & Marlena Gołaś & Kinga Pogodzińska & Jean-Loup Lecoeur & Barbara Tocco & Áron Török & Michele, 2020. "Are Short Food Supply Chains More Environmentally Sustainable than Long Chains? A Life Cycle Assessment (LCA) of the Eco-Efficiency of Food Chains in Selected EU Countries," Energies, MDPI, vol. 13(18), pages 1-26, September.
    7. Liangen Zeng, 2021. "China’s Eco-Efficiency: Regional Differences and Influencing Factors Based on a Spatial Panel Data Approach," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    8. Liu, Yansui & Zou, Lilin & Wang, Yongsheng, 2020. "Spatial-temporal characteristics and influencing factors of agricultural eco-efficiency in China in recent 40 years," Land Use Policy, Elsevier, vol. 97(C).
    9. Tamara Rudinskaya & Zdeňka Náglová, 2021. "Analysis of Consumption of Nitrogen Fertilisers and Environmental Efficiency in Crop Production of EU Countries," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    10. Joanna Domagała, 2021. "Economic and Environmental Aspects of Agriculture in the EU Countries," Energies, MDPI, vol. 14(22), pages 1-23, November.
    11. Bazyli Czyżewski & Marta Guth, 2021. "Impact of Policy and Factor Intensity on Sustainable Value of European Agriculture: Exploring Trade-Offs of Environmental, Economic and Social Efficiency at the Regional Level," Agriculture, MDPI, vol. 11(1), pages 1-19, January.
    12. Leonidas Sotirios Kyrgiakos & Georgios Kleftodimos & George Vlontzos & Panos M. Pardalos, 2023. "A systematic literature review of data envelopment analysis implementation in agriculture under the prism of sustainability," Operational Research, Springer, vol. 23(1), pages 1-38, March.
    13. Yun Hao & Degang Yang & Jingjing Yin & Xi Chen & Anming Bao & Miao Wu & Xiaoyun Zhang, 2019. "The Effects of Ecological Policy of Kyrgyzstan Based on Data Envelope Analysis," Sustainability, MDPI, vol. 11(7), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joanna Domagała, 2021. "Economic and Environmental Aspects of Agriculture in the EU Countries," Energies, MDPI, vol. 14(22), pages 1-23, November.
    2. Marlena Gołaś & Piotr Sulewski & Adam Wąs & Anna Kłoczko-Gajewska & Kinga Pogodzińska, 2020. "On the Way to Sustainable Agriculture—Eco-Efficiency of Polish Commercial Farms," Agriculture, MDPI, vol. 10(10), pages 1-24, September.
    3. Picazo-Tadeo, Andrés J. & Beltrán-Esteve, Mercedes & Gómez-Limón, José A., 2012. "Assessing eco-efficiency with directional distance functions," European Journal of Operational Research, Elsevier, vol. 220(3), pages 798-809.
    4. Trinks, Arjan & Mulder, Machiel & Scholtens, Bert, 2020. "An Efficiency Perspective on Carbon Emissions and Financial Performance," Ecological Economics, Elsevier, vol. 175(C).
    5. Mercedes Beltrán-Esteve & José Gómez-Limón & Andrés Picazo-Tadeo & Ernest Reig-Martínez, 2014. "A metafrontier directional distance function approach to assessing eco-efficiency," Journal of Productivity Analysis, Springer, vol. 41(1), pages 69-83, February.
    6. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2017. "Assessing environmental performance in the European Union: Eco-innovation versus catching-up," Energy Policy, Elsevier, vol. 104(C), pages 240-252.
    7. Picazo-Tadeo, Andrés J. & Castillo-Giménez, Juana & Beltrán-Esteve, Mercedes, 2014. "An intertemporal approach to measuring environmental performance with directional distance functions: Greenhouse gas emissions in the European Union," Ecological Economics, Elsevier, vol. 100(C), pages 173-182.
    8. Halkos, George & Petrou, Kleoniki Natalia, 2019. "Treating undesirable outputs in DEA: A critical review," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 97-104.
    9. Pyoungsoo Lee & You-Jin Park, 2017. "Eco-Efficiency Evaluation Considering Environmental Stringency," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    10. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    11. Hongwei Liu & Ronglu Yang & Zhixiang Zhou & Dacheng Huang, 2020. "Regional Green Eco-Efficiency in China: Considering Energy Saving, Pollution Treatment, and External Environmental Heterogeneity," Sustainability, MDPI, vol. 12(17), pages 1-19, August.
    12. Alfredsson, Eva & Månsson, Jonas & Vikström, Peter, 2016. "Internalising external environmental effects in efficiency analysis," Economic Analysis and Policy, Elsevier, vol. 51(C), pages 22-31.
    13. Song, Malin & Zhang, Jie & Wang, Shuhong, 2015. "Review of the network environmental efficiencies of listed petroleum enterprises in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 65-71.
    14. H. K. Millington & J. E. Lovell & C. A. K. Lovell, 2013. "Using Fieldwork, GIS and DEA to Guide Management of Urban Stream Health," CEPA Working Papers Series WP072013, School of Economics, University of Queensland, Australia.
    15. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    16. George Halkos & George Papageorgiou, 2016. "Spatial environmental efficiency indicators in regional waste generation: a nonparametric approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(1), pages 62-78, January.
    17. Leonidas Sotirios Kyrgiakos & Georgios Kleftodimos & George Vlontzos & Panos M. Pardalos, 2023. "A systematic literature review of data envelopment analysis implementation in agriculture under the prism of sustainability," Operational Research, Springer, vol. 23(1), pages 1-38, March.
    18. Mahlberg, Bernhard & Luptacik, Mikulas & Sahoo, Biresh K., 2011. "Examining the drivers of total factor productivity change with an illustrative example of 14 EU countries," Ecological Economics, Elsevier, vol. 72(C), pages 60-69.
    19. Xiangxiang Sun & Lawrence Loh, 2019. "Sustainability Governance in China: An Analysis of Regional Ecological Efficiency," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
    20. Santosh R. Ghimire & Adam C. Nayak & Joel Corona & Rajbir Parmar & Raghavan Srinivasan & Katie Mendoza & John M. Johnston, 2022. "Holistic Sustainability Assessment of Riparian Buffer Designs: Evaluation of Alternative Buffer Policy Scenarios Integrating Stream Water Quality and Costs," Sustainability, MDPI, vol. 14(19), pages 1-33, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4544-:d:187171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.