IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v58y2011i3p865-875.html
   My bibliography  Save this article

Modelling the flood vulnerability of deltaic Kuching City, Malaysia

Author

Listed:
  • Darrien Mah
  • Frederik Putuhena
  • Sai Lai

Abstract

The main objective of this writing is to present a practical way to envisage the flood vulnerability in deltaic region, particularly on the concern of sea level rise. Kuching city of Malaysia is established on banks of Sarawak River, 30 km from the sea. Therefore, it is subjected to fluvial and tidal floods. Kuching Bay experiences the highest King Tides in Southeast Asia region. These tide magnitudes could be a glimpse of future sea level rise. By means of modelling these tides, it provides an understanding and preparation for the impacts of sea level rise on the flood mitigation infrastructures and the city itself. The modelling efforts had created an illustration that a 10% rise in tide levels would result in increase of flooding areas up to 6% relative to existing tide levels. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • Darrien Mah & Frederik Putuhena & Sai Lai, 2011. "Modelling the flood vulnerability of deltaic Kuching City, Malaysia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 865-875, September.
  • Handle: RePEc:spr:nathaz:v:58:y:2011:i:3:p:865-875
    DOI: 10.1007/s11069-011-9731-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-011-9731-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-011-9731-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. P. V. Timbadiya & K. M. Krishnamraju, 2023. "A 2D hydrodynamic model for river flood prediction in a coastal floodplain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1143-1165, January.
    2. Octavio Rojas & María Mardones & Carolina Martínez & Luis Flores & Katia Sáez & Alberto Araneda, 2018. "Flooding in Central Chile: Implications of Tides and Sea Level Increase in the 21st Century," Sustainability, MDPI, vol. 10(12), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:58:y:2011:i:3:p:865-875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.