IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i10p3438-d172268.html
   My bibliography  Save this article

Integration of Seawater Pumped-Storage in the Energy System of the Island of São Miguel (Azores)

Author

Listed:
  • Christos S. Ioakimidis

    (ERA Chair (*Holder) ‘Net-Zero Energy Efficiency on City Districts, NZED’ Unit, Research Institute for Energy, University of Mons, Rue de l’Epargne, 56, 7000 Mons, Belgium
    MIT|Portugal Program, Sustainable Energy Systems, Tagus Park, 2744-016 Porto Salvo, Portugal
    IN+, Department of Mechanical Engineering, Instituto Superior Técnico, (UTL), 1049-001 Lisbon, Portugal)

  • Konstantinos N. Genikomsakis

    (ERA Chair (*Holder) ‘Net-Zero Energy Efficiency on City Districts, NZED’ Unit, Research Institute for Energy, University of Mons, Rue de l’Epargne, 56, 7000 Mons, Belgium)

Abstract

This paper considers the case of São Miguel in the Azores archipelago as a typical example of an isolated island with high renewable energy potential, but low baseload levels, lack of energy storage facilities, and dependence on fossil fuels that incurs high import costs. Using the Integrated MARKAL-EFOM System (TIMES), a number of scenarios are examined in order to analyze and assess the potential benefits from the implementation of a seawater pumped-storage (SPS) system, in the absence or presence of electric drive vehicles (EDVs) under a grid-to-vehicle (G2V) approach. The results obtained show that the proposed solution increases the penetration of renewable energy in the system, thus reducing the dependence on fossil fuel imports and allowing, at the same time, for the deployment of EDVs as a promising environmentally friendly alternative to conventional vehicles with internal combustion engines.

Suggested Citation

  • Christos S. Ioakimidis & Konstantinos N. Genikomsakis, 2018. "Integration of Seawater Pumped-Storage in the Energy System of the Island of São Miguel (Azores)," Sustainability, MDPI, vol. 10(10), pages 1-14, September.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3438-:d:172268
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/10/3438/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/10/3438/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G. & Stefanakis, Ioannis & Spanos, Petros & Stefanakis, Nikos, 2013. "Technical details regarding the design, the construction and the operation of seawater pumped storage systems," Energy, Elsevier, vol. 55(C), pages 619-630.
    2. Akhil Kadiyala & Raghava Kommalapati & Ziaul Huque, 2016. "Evaluation of the Life Cycle Greenhouse Gas Emissions from Hydroelectricity Generation Systems," Sustainability, MDPI, vol. 8(6), pages 1-14, June.
    3. Ana Rodrigues & Denise Machado & Tomaz Dentinho, 2017. "Electrical Energy Storage Systems Feasibility; the Case of Terceira Island," Sustainability, MDPI, vol. 9(7), pages 1-20, July.
    4. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G. & Zervos, Arthouros & Papantonis, Dimitris & Voutsinas, Spiros, 2008. "Pumped storage systems introduction in isolated power production systems," Renewable Energy, Elsevier, vol. 33(3), pages 467-490.
    5. Fei Teng & Danny Pudjianto & Marko Aunedi & Goran Strbac, 2018. "Assessment of Future Whole-System Value of Large-Scale Pumped Storage Plants in Europe," Energies, MDPI, vol. 11(1), pages 1-19, January.
    6. Julia Merino & Carlos Veganzones & Jose A. Sanchez & Sergio Martinez & Carlos A. Platero, 2012. "Power System Stability of a Small Sized Isolated Network Supplied by a Combined Wind-Pumped Storage Generation System: A Case Study in the Canary Islands," Energies, MDPI, vol. 5(7), pages 1-19, July.
    7. Gerardo J. Osório & Miadreza Shafie-khah & Juan M. Lujano-Rojas & João P. S. Catalão, 2018. "Scheduling Model for Renewable Energy Sources Integration in an Insular Power System," Energies, MDPI, vol. 11(1), pages 1-16, January.
    8. Vaillancourt, Kathleen & Labriet, Maryse & Loulou, Richard & Waaub, Jean-Philippe, 2008. "The role of nuclear energy in long-term climate scenarios: An analysis with the World-TIMES model," Energy Policy, Elsevier, vol. 36(7), pages 2296-2307, July.
    9. Akhil Kadiyala & Raghava Kommalapati & Ziaul Huque, 2016. "Evaluation of the Life Cycle Greenhouse Gas Emissions from Different Biomass Feedstock Electricity Generation Systems," Sustainability, MDPI, vol. 8(11), pages 1-12, November.
    10. Gagnon, Luc & Belanger, Camille & Uchiyama, Yohji, 2002. "Life-cycle assessment of electricity generation options: The status of research in year 2001," Energy Policy, Elsevier, vol. 30(14), pages 1267-1278, November.
    11. Manfrida, Giampaolo & Secchi, Riccardo, 2014. "Seawater pumping as an electricity storage solution for photovoltaic energy systems," Energy, Elsevier, vol. 69(C), pages 470-484.
    12. Chang-Gi Min & Mun-Kyeom Kim, 2017. "Flexibility-Based Reserve Scheduling of Pumped Hydroelectric Energy Storage in Korea," Energies, MDPI, vol. 10(10), pages 1-13, September.
    13. Tronchin, Lamberto & Manfren, Massimiliano & Nastasi, Benedetto, 2018. "Energy efficiency, demand side management and energy storage technologies – A critical analysis of possible paths of integration in the built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 341-353.
    14. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G., 2014. "Seawater pumped storage systems and offshore wind parks in islands with low onshore wind potential. A fundamental case study," Energy, Elsevier, vol. 66(C), pages 470-486.
    15. Ibrahim, H. & Ilinca, A. & Perron, J., 2008. "Energy storage systems--Characteristics and comparisons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1221-1250, June.
    16. Camus, Cristina & Farias, Tiago, 2012. "The electric vehicles as a mean to reduce CO2 emissions and energy costs in isolated regions. The São Miguel (Azores) case study," Energy Policy, Elsevier, vol. 43(C), pages 153-165.
    17. Deane, J.P. & Ó Gallachóir, B.P. & McKeogh, E.J., 2010. "Techno-economic review of existing and new pumped hydro energy storage plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1293-1302, May.
    18. Howells, M. I. & Alfstad, T. & Victor, D. G. & Goldstein, G. & Remme, U., 2005. "A model of household energy services in a low-income rural African village," Energy Policy, Elsevier, vol. 33(14), pages 1833-1851, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frate, Guido Francesco & Ferrari, Lorenzo & Desideri, Umberto, 2021. "Energy storage for grid-scale applications: Technology review and economic feasibility analysis," Renewable Energy, Elsevier, vol. 163(C), pages 1754-1772.
    2. Athanasios Zisos & Georgia-Konstantina Sakki & Andreas Efstratiadis, 2023. "Mixing Renewable Energy with Pumped Hydropower Storage: Design Optimization under Uncertainty and Other Challenges," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    3. Hunt, Julian David & Zakeri, Behnam & Lopes, Rafael & Barbosa, Paulo Sérgio Franco & Nascimento, Andreas & Castro, Nivalde José de & Brandão, Roberto & Schneider, Paulo Smith & Wada, Yoshihide, 2020. "Existing and new arrangements of pumped-hydro storage plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    4. Francisco Briongos & Carlos A. Platero & José A. Sánchez-Fernández & Christophe Nicolet, 2020. "Evaluation of the Operating Efficiency of a Hybrid Wind–Hydro Powerplant," Sustainability, MDPI, vol. 12(2), pages 1-16, January.
    5. Weiwei Yao & Changhong Deng & Dinglin Li & Man Chen & Peng Peng & Hao Zhang, 2019. "Optimal Sizing of Seawater Pumped Storage Plant with Variable-Speed Units Considering Offshore Wind Power Accommodation," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    6. Ansorena Ruiz, R. & de Vilder, L.H. & Prasasti, E.B. & Aouad, M. & De Luca, A. & Geisseler, B. & Terheiden, K. & Scanu, S. & Miccoli, A. & Roeber, V. & Marence, M. & Moll, R. & Bricker, J.D. & Goseber, 2022. "Low-head pumped hydro storage: A review on civil structure designs, legal and environmental aspects to make its realization feasible in seawater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    7. Bowen Zhou & Zhibo Zhang & Guangdi Li & Dongsheng Yang & Matilde Santos, 2023. "Review of Key Technologies for Offshore Floating Wind Power Generation," Energies, MDPI, vol. 16(2), pages 1-26, January.
    8. Ghorbani, Narges & Makian, Hamed & Breyer, Christian, 2019. "A GIS-based method to identify potential sites for pumped hydro energy storage - Case of Iran," Energy, Elsevier, vol. 169(C), pages 854-867.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    2. Erdinc, Ozan & Paterakis, Nikolaos G. & Catalão, João P.S., 2015. "Overview of insular power systems under increasing penetration of renewable energy sources: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 333-346.
    3. Grażyna Frydrychowicz-Jastrzębska, 2018. "El Hierro Renewable Energy Hybrid System: A Tough Compromise," Energies, MDPI, vol. 11(10), pages 1-20, October.
    4. Guittet, Mélanie & Capezzali, Massimiliano & Gaudard, Ludovic & Romerio, Franco & Vuille, François & Avellan, François, 2016. "Study of the drivers and asset management of pumped-storage power plants historical and geographical perspective," Energy, Elsevier, vol. 111(C), pages 560-579.
    5. Athanasios Zisos & Georgia-Konstantina Sakki & Andreas Efstratiadis, 2023. "Mixing Renewable Energy with Pumped Hydropower Storage: Design Optimization under Uncertainty and Other Challenges," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    6. Héctor Álvarez & Guillermo Domínguez & Almudena Ordóñez & Javier Menéndez & Rodrigo Álvarez & Jorge Loredo, 2021. "Mine Water for the Generation and Storage of Renewable Energy: A Hybrid Hydro–Wind System," IJERPH, MDPI, vol. 18(13), pages 1-18, June.
    7. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    8. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G., 2014. "Seawater pumped storage systems and offshore wind parks in islands with low onshore wind potential. A fundamental case study," Energy, Elsevier, vol. 66(C), pages 470-486.
    9. Xuerong Li & Faliang Gui & Qingpeng Li, 2019. "Can Hydropower Still Be Considered a Clean Energy Source? Compelling Evidence from a Middle-Sized Hydropower Station in China," Sustainability, MDPI, vol. 11(16), pages 1-13, August.
    10. Katsaprakakis, Dimitris Al., 2016. "Hybrid power plants in non-interconnected insular systems," Applied Energy, Elsevier, vol. 164(C), pages 268-283.
    11. Guerra, K. & Haro, P. & Gutiérrez, R.E. & Gómez-Barea, A., 2022. "Facing the high share of variable renewable energy in the power system: Flexibility and stability requirements," Applied Energy, Elsevier, vol. 310(C).
    12. Ardizzon, G. & Cavazzini, G. & Pavesi, G., 2014. "A new generation of small hydro and pumped-hydro power plants: Advances and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 746-761.
    13. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G. & Stefanakis, Ioannis & Spanos, Petros & Stefanakis, Nikos, 2013. "Technical details regarding the design, the construction and the operation of seawater pumped storage systems," Energy, Elsevier, vol. 55(C), pages 619-630.
    14. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    15. Li, Jinying & Li, Sisi & Wu, Fan, 2020. "Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory," Renewable Energy, Elsevier, vol. 155(C), pages 456-468.
    16. Shabani, Masoume & Mahmoudimehr, Javad, 2019. "Influence of climatological data records on design of a standalone hybrid PV-hydroelectric power system," Renewable Energy, Elsevier, vol. 141(C), pages 181-194.
    17. Zhu, Baoshan & Wang, Xuhe & Tan, Lei & Zhou, Dongyue & Zhao, Yue & Cao, Shuliang, 2015. "Optimization design of a reversible pump–turbine runner with high efficiency and stability," Renewable Energy, Elsevier, vol. 81(C), pages 366-376.
    18. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    19. Mahmoudimehr, Javad & Shabani, Masoume, 2018. "Optimal design of hybrid photovoltaic-hydroelectric standalone energy system for north and south of Iran," Renewable Energy, Elsevier, vol. 115(C), pages 238-251.
    20. Song, Cuihong & Gardner, Kevin H. & Klein, Sharon J.W. & Souza, Simone Pereira & Mo, Weiwei, 2018. "Cradle-to-grave greenhouse gas emissions from dams in the United States of America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 945-956.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3438-:d:172268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.