Contrastive Learning Framework for Bitcoin Crash Prediction
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Brian Kenji Iwana & Seiichi Uchida, 2021. "An empirical survey of data augmentation for time series classification with neural networks," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-32, July.
- Anders Johansen & Didier Sornette, 2010. "Shocks, Crashes and Bubbles in Financial Markets," Brussels Economic Review, ULB -- Universite Libre de Bruxelles, vol. 53(2), pages 201-253.
- A. Johansen & D. Sornette, 1998. "Stock market crashes are outliers," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 1(2), pages 141-143, January.
- Timo Teräsvirta & Chien‐Fu Lin & Clive W. J. Granger, 1993. "Power Of The Neural Network Linearity Test," Journal of Time Series Analysis, Wiley Blackwell, vol. 14(2), pages 209-220, March.
- Shu, Min & Zhu, Wei, 2020. "Real-time prediction of Bitcoin bubble crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
- Geuder, Julian & Kinateder, Harald & Wagner, Niklas F., 2019. "Cryptocurrencies as financial bubbles: The case of Bitcoin," Finance Research Letters, Elsevier, vol. 31(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fruehwirt, Wolfgang & Hochfilzer, Leonhard & Weydemann, Leonard & Roberts, Stephen, 2021. "Cumulation, crash, coherency: A cryptocurrency bubble wavelet analysis," Finance Research Letters, Elsevier, vol. 40(C).
- Assaf, Ata & Demir, Ender & Ersan, Oguz, 2024. "Detecting and date-stamping bubbles in fan tokens," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 98-113.
- Sergio Luis Náñez Alonso & Javier Jorge-Vázquez & Miguel Ángel Echarte Fernández & David Sanz-Bas, 2024. "Bitcoin’s bubbly behaviors: does it resemble other financial bubbles of the past?," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
- Yao, Can-Zhong & Li, Hong-Yu, 2021. "A study on the bursting point of Bitcoin based on the BSADF and LPPLS methods," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
- Song, Ruiqiang & Shu, Min & Zhu, Wei, 2022. "The 2020 global stock market crash: Endogenous or exogenous?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
- Damian Smug & Peter Ashwin & Didier Sornette, 2018. "Predicting financial market crashes using ghost singularities," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-20, March.
- Eray Gemici & Muslum Polat & Remzi Gök & Muhammad Asif Khan & Mohammed Arshad Khan & Yunus Kilic, 2023. "Do Bubbles in the Bitcoin Market Impact Stock Markets? Evidence From 10 Major Stock Markets," SAGE Open, , vol. 13(2), pages 21582440231, June.
- Bikramaditya Ghosh & Spyros Papathanasiou & Vandita Dar & Dimitrios Kenourgios, 2022. "Deconstruction of the Green Bubble during COVID-19 International Evidence," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
- Zhang, Qunzhi & Sornette, Didier & Balcilar, Mehmet & Gupta, Rangan & Ozdemir, Zeynel Abidin & Yetkiner, Hakan, 2016.
"LPPLS bubble indicators over two centuries of the S&P 500 index,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 126-139.
- Qunzhi Zhang & Didier Sornette & Mehmet Balcilar & Rangan Gupta & Zeynel A. Ozdemir & Hakan Yetkiner, 2016. "LPPLS Bubble Indicators over Two Centuries of the S&P 500 Index," Working Papers 201606, University of Pretoria, Department of Economics.
- Vakhtina, Elena & Wosnitza, Jan Henrik, 2015. "Capital market based warning indicators of bank runs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 304-320.
- Junqing Tang & Hans R. Heinimann, 2019. "Quantitative evaluation of consecutive resilience cycles in stock market performance: A systems-oriented approach," Papers 1903.03201, arXiv.org.
- Bikramaditya Ghosh & Spyros Papathanasiou & Georgios Pergeris, 2022. "Did cryptocurrencies exhibit log‐periodic power law signature during the second wave of COVID‐19?," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 51(3), November.
- Kyriazis, Nikolaos & Papadamou, Stephanos & Corbet, Shaen, 2020. "A systematic review of the bubble dynamics of cryptocurrency prices," Research in International Business and Finance, Elsevier, vol. 54(C).
- Dulani Jayasuriya Daluwathumullagamage & Alexandra Sims, 2021. "Fantastic Beasts: Blockchain Based Banking," JRFM, MDPI, vol. 14(4), pages 1-43, April.
- Ma, Yu & Luan, Zhiqian, 2022. "Ethereum synchronicity, upside volatility and Bitcoin crash risk," Finance Research Letters, Elsevier, vol. 46(PA).
- Filimonov, Vladimir & Sornette, Didier, 2015. "Power law scaling and “Dragon-Kings” in distributions of intraday financial drawdowns," Chaos, Solitons & Fractals, Elsevier, vol. 74(C), pages 27-45.
- Kensuke Ito & Kyohei Shibano & Gento Mogi, 2022. "Bubble Prediction of Non-Fungible Tokens (NFTs): An Empirical Investigation," Papers 2203.12587, arXiv.org, revised Jun 2022.
- Anders Johansen & Didier Sornette & Olivier Ledoit, 1999. "Empirical and Theoretical Status of Discrete Scale Invariance in Financial Crashes," Finance 9903006, University Library of Munich, Germany.
- Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
- Y. Malevergne & D. Sornette, 2003. "VaR-Efficient Portfolios for a Class of Super- and Sub-Exponentially Decaying Assets Return Distributions," Papers physics/0301009, arXiv.org.
More about this item
Keywords
cryptocurrency; deep learning; machine learning; representation learning; time series classification;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:7:y:2024:i:2:p:25-433:d:1390045. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.