IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v5y2022i4p81-1353d1005774.html
   My bibliography  Save this article

Statistical Analysis in the Presence of Spatial Autocorrelation: Selected Sampling Strategy Effects

Author

Listed:
  • Daniel A. Griffith

    (School of Economic, Political, and Policy Sciences, University of Texas at Dallas, Richardson, TX 75080, USA)

  • Richard E. Plant

    (Departments of Plant Sciences and Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA)

Abstract

Fundamental to most classical data collection sampling theory development is the random drawings assumption requiring that each targeted population member has a known sample selection (i.e., inclusion) probability. Frequently, however, unrestricted random sampling of spatially autocorrelated data is impractical and/or inefficient. Instead, randomly choosing a population subset accounts for its exhibited spatial pattern by utilizing a grid, which often provides improved parameter estimates, such as the geographic landscape mean, at least via its precision. Unfortunately, spatial autocorrelation latent in these data can produce a questionable mean and/or standard error estimate because each sampled population member contains information about its nearby members, a data feature explicitly acknowledged in model-based inference, but ignored in design-based inference. This autocorrelation effect prompted the development of formulae for calculating an effective sample size (i.e., the equivalent number of sample selections from a geographically randomly distributed population that would yield the same sampling error) estimate. Some researchers recently challenged this and other aspects of spatial statistics as being incorrect/invalid/misleading. This paper seeks to address this category of misconceptions, demonstrating that the effective geographic sample size is a valid and useful concept regardless of the inferential basis invoked. Its spatial statistical methodology builds upon the preceding ingredients.

Suggested Citation

  • Daniel A. Griffith & Richard E. Plant, 2022. "Statistical Analysis in the Presence of Spatial Autocorrelation: Selected Sampling Strategy Effects," Stats, MDPI, vol. 5(4), pages 1-20, December.
  • Handle: RePEc:gam:jstats:v:5:y:2022:i:4:p:81-1353:d:1005774
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/5/4/81/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/5/4/81/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiahua Chen, 2017. "On finite mixture models," Statistical Theory and Related Fields, Taylor & Francis Journals, vol. 1(1), pages 15-27, January.
    2. James P. LeSage & R. Kelley Pace, 2014. "The Biggest Myth in Spatial Econometrics," Econometrics, MDPI, vol. 2(4), pages 1-33, December.
    3. Ioulia Papageorgiou, 2016. "Sampling from Correlated Populations: Optimal Strategies and Comparison Study," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(1), pages 119-151, May.
    4. Acosta, Jonathan & Alegría, Alfredo & Osorio, Felipe & Vallejos, Ronny, 2021. "Assessing the effective sample size for large spatial datasets: A block likelihood approach," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    5. Daniel A. Griffith, 2020. "A Family of Correlated Observations: From Independent to Strongly Interrelated Ones," Stats, MDPI, vol. 3(3), pages 1-19, June.
    6. Hodges, James S. & Reich, Brian J., 2010. "Adding Spatially-Correlated Errors Can Mess Up the Fixed Effect You Love," The American Statistician, American Statistical Association, vol. 64(4), pages 325-334.
    7. Ron Johnston & Kelvyn Jones & David Manley, 2018. "Confounding and collinearity in regression analysis: a cautionary tale and an alternative procedure, illustrated by studies of British voting behaviour," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(4), pages 1957-1976, July.
    8. Mark D. Partridge & Marlon Boarnet & Steven Brakman & Gianmarco Ottaviano, 2012. "Introduction: Whither Spatial Econometrics?," Journal of Regional Science, Wiley Blackwell, vol. 52(2), pages 167-171, May.
    9. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    10. Jon Wakefield, 2003. "Sensitivity Analyses for Ecological Regression," Biometrics, The International Biometric Society, vol. 59(1), pages 9-17, March.
    11. Junyu Zheng & H. Christopher Frey, 2004. "Quantification of Variability and Uncertainty Using Mixture Distributions: Evaluation of Sample Size, Mixing Weights, and Separation Between Components," Risk Analysis, John Wiley & Sons, vol. 24(3), pages 553-571, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Letícia Ellen Dal Canton & Luciana Pagliosa Carvalho Guedes & Miguel Angel Uribe-Opazo & Tamara Cantu Maltauro, 2023. "Effective Sample Size with the Bivariate Gaussian Common Component Model," Stats, MDPI, vol. 6(4), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cici Bauer & Jon Wakefield, 2018. "Stratified space–time infectious disease modelling, with an application to hand, foot and mouth disease in China," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1379-1398, November.
    2. Demidova, Olga, 2021. "Methods of spatial econometrics and evaluation of government programs effectiveness," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 64, pages 107-134.
    3. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    4. Matthew J. Higgins & Donald J. Lacombe & Briana S. Stenard & Andrew T. Young, 2021. "Evaluating the effects of Small Business Administration lending on growth," Small Business Economics, Springer, vol. 57(1), pages 23-45, June.
    5. Duncan Lee & Alastair Rushworth & Sujit K. Sahu, 2014. "A Bayesian localized conditional autoregressive model for estimating the health effects of air pollution," Biometrics, The International Biometric Society, vol. 70(2), pages 419-429, June.
    6. Daniel A. Griffith, 2024. "Comments on the Bernoulli Distribution and Hilbe’s Implicit Extra-Dispersion," Stats, MDPI, vol. 7(1), pages 1-15, March.
    7. Panczak, Radoslaw & Moser, André & Held, Leonhard & Jones, Philip A. & Rühli, Frank J. & Staub, Kaspar, 2017. "A tall order: Small area mapping and modelling of adult height among Swiss male conscripts," Economics & Human Biology, Elsevier, vol. 26(C), pages 61-69.
    8. Hauke Thaden & Thomas Kneib, 2018. "Structural Equation Models for Dealing With Spatial Confounding," The American Statistician, Taylor & Francis Journals, vol. 72(3), pages 239-252, July.
    9. Duncan Lee & Richard Mitchell, 2013. "Locally adaptive spatial smoothing using conditional auto-regressive models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 593-608, August.
    10. Sebastien J-P. A. Haneuse & Jonathan C. Wakefield, 2007. "Hierarchical Models for Combining Ecological and Case–Control Data," Biometrics, The International Biometric Society, vol. 63(1), pages 128-136, March.
    11. Daniel A. Griffith, 2019. "Negative Spatial Autocorrelation: One of the Most Neglected Concepts in Spatial Statistics," Stats, MDPI, vol. 2(3), pages 1-28, August.
    12. Ying C. MacNab, 2018. "Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 497-541, September.
    13. Oshan, Taylor M., 2020. "The spatial structure debate in spatial interaction modeling: 50 years on," OSF Preprints 42vxn, Center for Open Science.
    14. Daisuke Murakami & Daniel Griffith, 2015. "Random effects specifications in eigenvector spatial filtering: a simulation study," Journal of Geographical Systems, Springer, vol. 17(4), pages 311-331, October.
    15. Lan Hu & Yongwan Chun & Daniel A. Griffith, 2020. "Uncovering a positive and negative spatial autocorrelation mixture pattern: a spatial analysis of breast cancer incidences in Broward County, Florida, 2000–2010," Journal of Geographical Systems, Springer, vol. 22(3), pages 291-308, July.
    16. Joshua P. Keller & Adam A. Szpiro, 2020. "Selecting a scale for spatial confounding adjustment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1121-1143, June.
    17. Adolfo Maza & Paula Gutiérrez‐Portilla & José Villaverde, 2020. "On the drivers of UK direct investment in the Spanish regions: A spatial Durbin approach," Growth and Change, Wiley Blackwell, vol. 51(2), pages 646-675, June.
    18. Rubén Ferrer Velasco & Margret Köthke & Melvin Lippe & Sven Günter, 2020. "Scale and context dependency of deforestation drivers: Insights from spatial econometrics in the tropics," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-32, January.
    19. Jon Wakefield, 2004. "Ecological inference for 2 × 2 tables (with discussion)," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(3), pages 385-445, July.
    20. G. Vicente & T. Goicoa & P. Fernandez‐Rasines & M. D. Ugarte, 2020. "Crime against women in India: unveiling spatial patterns and temporal trends of dowry deaths in the districts of Uttar Pradesh," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 655-679, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:5:y:2022:i:4:p:81-1353:d:1005774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.