IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v6y2023i4p61-989d1250282.html
   My bibliography  Save this article

Confounder Adjustment in Shape-on-Scalar Regression Model: Corpus Callosum Shape Alterations in Alzheimer’s Disease

Author

Listed:
  • Harshita Dogra

    (Department of Statistics, Florida State University, Tallahassee, FL 32306, USA)

  • Shengxian Ding

    (Department of Statistics, Florida State University, Tallahassee, FL 32306, USA)

  • Miyeon Yeon

    (Department of Statistics, Florida State University, Tallahassee, FL 32306, USA)

  • Rongjie Liu

    (Department of Statistics, Florida State University, Tallahassee, FL 32306, USA)

  • Chao Huang

    (Department of Statistics, Florida State University, Tallahassee, FL 32306, USA)

Abstract

Large-scale imaging studies often face challenges stemming from heterogeneity arising from differences in geographic location, instrumental setups, image acquisition protocols, study design, and latent variables that remain undisclosed. While numerous regression models have been developed to elucidate the interplay between imaging responses and relevant covariates, limited attention has been devoted to cases where the imaging responses pertain to the domain of shape. This adds complexity to the problem of imaging heterogeneity, primarily due to the unique properties inherent to shape representations, including nonlinearity, high-dimensionality, and the intricacies of quotient space geometry. To tackle this intricate issue, we propose a novel approach: a shape-on-scalar regression model that incorporates confounder adjustment. In particular, we leverage the square root velocity function to extract elastic shape representations which are embedded within the linear Hilbert space of square integrable functions. Subsequently, we introduce a shape regression model aimed at characterizing the intricate relationship between elastic shapes and covariates of interest, all while effectively managing the challenges posed by imaging heterogeneity. We develop comprehensive procedures for estimating and making inferences about the unknown model parameters. Through real-data analysis, our method demonstrates its superiority in terms of estimation accuracy when compared to existing approaches.

Suggested Citation

  • Harshita Dogra & Shengxian Ding & Miyeon Yeon & Rongjie Liu & Chao Huang, 2023. "Confounder Adjustment in Shape-on-Scalar Regression Model: Corpus Callosum Shape Alterations in Alzheimer’s Disease," Stats, MDPI, vol. 6(4), pages 1-10, September.
  • Handle: RePEc:gam:jstats:v:6:y:2023:i:4:p:61-989:d:1250282
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/6/4/61/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/6/4/61/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. C Huang & H Zhu, 2022. "Functional hybrid factor regression model for handling heterogeneity in imaging studies [Relationships between years of education and gray matter volume, metabolism and functional connectivity in h," Biometrika, Biometrika Trust, vol. 109(4), pages 1133-1148.
    2. Jeffrey T Leek & John D Storey, 2007. "Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis," PLOS Genetics, Public Library of Science, vol. 3(9), pages 1-12, September.
    3. Axel Montagne & Daniel A. Nation & Abhay P. Sagare & Giuseppe Barisano & Melanie D. Sweeney & Ararat Chakhoyan & Maricarmen Pachicano & Elizabeth Joe & Amy R. Nelson & Lina M. D’Orazio & David P. Buen, 2020. "APOE4 leads to blood–brain barrier dysfunction predicting cognitive decline," Nature, Nature, vol. 581(7806), pages 71-76, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Özkan İş & Xue Wang & Joseph S. Reddy & Yuhao Min & Elanur Yilmaz & Prabesh Bhattarai & Tulsi Patel & Jeremiah Bergman & Zachary Quicksall & Michael G. Heckman & Frederick Q. Tutor-New & Birsen Can De, 2024. "Gliovascular transcriptional perturbations in Alzheimer’s disease reveal molecular mechanisms of blood brain barrier dysfunction," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    2. Arjun Bhattacharya & Anastasia N. Freedman & Vennela Avula & Rebeca Harris & Weifang Liu & Calvin Pan & Aldons J. Lusis & Robert M. Joseph & Lisa Smeester & Hadley J. Hartwell & Karl C. K. Kuban & Car, 2022. "Placental genomics mediates genetic associations with complex health traits and disease," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. repec:jss:jstsof:40:i14 is not listed on IDEAS
    4. Won Jun Lee & Sang Cheol Kim & Jung-Ho Yoon & Sang Jun Yoon & Johan Lim & You-Sun Kim & Sung Won Kwon & Jeong Hill Park, 2016. "Meta-Analysis of Tumor Stem-Like Breast Cancer Cells Using Gene Set and Network Analysis," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-20, February.
    5. Emanuele Aliverti & Kristian Lum & James E. Johndrow & David B. Dunson, 2021. "Removing the influence of group variables in high‐dimensional predictive modelling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 791-811, July.
    6. Marron, J.S., 2017. "Big Data in context and robustness against heterogeneity," Econometrics and Statistics, Elsevier, vol. 2(C), pages 73-80.
    7. Seungchul Baek & Yen‐Yi Ho & Yanyuan Ma, 2020. "Using sufficient direction factor model to analyze latent activities associated with breast cancer survival," Biometrics, The International Biometric Society, vol. 76(4), pages 1340-1350, December.
    8. Griffin, Maryclare & Hoff, Peter D., 2019. "Lasso ANOVA decompositions for matrix and tensor data," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 181-194.
    9. Yunfeng Li & Jarrett Morrow & Benjamin Raby & Kelan Tantisira & Scott T Weiss & Wei Huang & Weiliang Qiu, 2017. "Detecting disease-associated genomic outcomes using constrained mixture of Bayesian hierarchical models for paired data," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-16, March.
    10. Zhaohui Qin & Ben Li & Karen N. Conneely & Hao Wu & Ming Hu & Deepak Ayyala & Yongseok Park & Victor X. Jin & Fangyuan Zhang & Han Zhang & Li Li & Shili Lin, 2016. "Statistical Challenges in Analyzing Methylation and Long-Range Chromosomal Interaction Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 284-309, October.
    11. Zemin Zheng & Jinchi Lv & Wei Lin, 2021. "Nonsparse Learning with Latent Variables," Operations Research, INFORMS, vol. 69(1), pages 346-359, January.
    12. Chee Ho H’ng & Shanika L. Amarasinghe & Boya Zhang & Hojin Chang & Xinli Qu & David R. Powell & Alberto Rosello-Diez, 2024. "Compensatory growth and recovery of cartilage cytoarchitecture after transient cell death in fetal mouse limbs," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Mark Reimers, 2010. "Making Informed Choices about Microarray Data Analysis," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-7, May.
    14. Leek Jeffrey T & Storey John D., 2011. "The Joint Null Criterion for Multiple Hypothesis Tests," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, June.
    15. Christos Miliotis & Yuling Ma & Xanthi-Lida Katopodi & Dimitra Karagkouni & Eleni Kanata & Kaia Mattioli & Nikolas Kalavros & Yered H. Pita-Juárez & Felipe Batalini & Varune R. Ramnarine & Shivani Nan, 2024. "Determinants of gastric cancer immune escape identified from non-coding immune-landscape quantitative trait loci," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Nicoló Fusi & Oliver Stegle & Neil D Lawrence, 2012. "Joint Modelling of Confounding Factors and Prominent Genetic Regulators Provides Increased Accuracy in Genetical Genomics Studies," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-9, January.
    17. Jin Hyun Ju & Sushila A Shenoy & Ronald G Crystal & Jason G Mezey, 2017. "An independent component analysis confounding factor correction framework for identifying broad impact expression quantitative trait loci," PLOS Computational Biology, Public Library of Science, vol. 13(5), pages 1-26, May.
    18. Miecznikowski, Jeffrey C. & Gold, David & Shepherd, Lori & Liu, Song, 2011. "Deriving and comparing the distribution for the number of false positives in single step methods to control k-FWER," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1695-1705, November.
    19. Aline Talhouk & Stefan Kommoss & Robertson Mackenzie & Martin Cheung & Samuel Leung & Derek S Chiu & Steve E Kalloger & David G Huntsman & Stephanie Chen & Maria Intermaggio & Jacek Gronwald & Fong C , 2016. "Single-Patient Molecular Testing with NanoString nCounter Data Using a Reference-Based Strategy for Batch Effect Correction," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-18, April.
    20. Yuto Hasegawa & Juhyun Kim & Gianluca Ursini & Yan Jouroukhin & Xiaolei Zhu & Yu Miyahara & Feiyi Xiong & Samskruthi Madireddy & Mizuho Obayashi & Beat Lutz & Akira Sawa & Solange P. Brown & Mikhail V, 2023. "Microglial cannabinoid receptor type 1 mediates social memory deficits in mice produced by adolescent THC exposure and 16p11.2 duplication," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    21. Charlotte Soneson & Sarah Gerster & Mauro Delorenzi, 2014. "Batch Effect Confounding Leads to Strong Bias in Performance Estimates Obtained by Cross-Validation," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:6:y:2023:i:4:p:61-989:d:1250282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.