IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v109y2022i4p1133-1148..html
   My bibliography  Save this article

Functional hybrid factor regression model for handling heterogeneity in imaging studies
[Relationships between years of education and gray matter volume, metabolism and functional connectivity in healthy elders]

Author

Listed:
  • C Huang
  • H Zhu

Abstract

SummaryThis paper develops a functional hybrid factor regression modelling framework to handle the heterogeneity of many large-scale imaging studies, such as the Alzheimer’s disease neuroimaging initiative study. Despite the numerous successes of those imaging studies, such heterogeneity may be caused by the differences in study environment, population, design, protocols or other hidden factors, and it has posed major challenges in integrative analysis of imaging data collected from multicentres or multistudies. We propose both estimation and inference procedures for estimating unknown parameters and detecting unknown factors under our new model. The asymptotic properties of both estimation and inference procedures are systematically investigated. The finite-sample performance of our proposed procedures is assessed by using Monte Carlo simulations and a real data example on hippocampal surface data from the Alzheimer’s disease study.

Suggested Citation

  • C Huang & H Zhu, 2022. "Functional hybrid factor regression model for handling heterogeneity in imaging studies [Relationships between years of education and gray matter volume, metabolism and functional connectivity in h," Biometrika, Biometrika Trust, vol. 109(4), pages 1133-1148.
  • Handle: RePEc:oup:biomet:v:109:y:2022:i:4:p:1133-1148.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asac007
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harshita Dogra & Shengxian Ding & Miyeon Yeon & Rongjie Liu & Chao Huang, 2023. "Confounder Adjustment in Shape-on-Scalar Regression Model: Corpus Callosum Shape Alterations in Alzheimer’s Disease," Stats, MDPI, vol. 6(4), pages 1-10, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:109:y:2022:i:4:p:1133-1148.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.