IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v6y2023i2p39-625d1141547.html
   My bibliography  Save this article

Combining Probability and Nonprobability Samples by Using Multivariate Mass Imputation Approaches with Application to Biomedical Research

Author

Listed:
  • Sixia Chen

    (Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, 801 NE 13th St., Oklahoma City, OK 73104, USA)

  • Alexandra May Woodruff

    (Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, 801 NE 13th St., Oklahoma City, OK 73104, USA)

  • Janis Campbell

    (Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, 801 NE 13th St., Oklahoma City, OK 73104, USA)

  • Sara Vesely

    (Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, 801 NE 13th St., Oklahoma City, OK 73104, USA)

  • Zheng Xu

    (Department of Mathematics and Statistics, Wright State University, Dayton, OH 45324, USA)

  • Cuyler Snider

    (Southern Plains Tribal Health Board, 9705 Broadway Ext, Oklahoma City, OK 73114, USA)

Abstract

Nonprobability samples have been used frequently in practice including public health study, economics, education, and political polls. Naïve estimates based on nonprobability samples without any further adjustments may suffer from serious selection bias. Mass imputation has been shown to be effective in practice to improve the representativeness of nonprobability samples. It builds an imputation model based on nonprobability samples and generates imputed values for all units in the probability samples. In this paper, we compare two mass imputation approaches including latent joint multivariate normal model mass imputation (e.g., Generalized Efficient Regression-Based Imputation with Latent Processes (GERBIL)) and fully conditional specification (FCS) procedures for integrating multiple outcome variables simultaneously. The Monte Carlo simulation study shows the benefits of GERBIL and FCS with predictive mean matching in terms of balancing the Monte Carlo bias and variance. We further evaluate our proposed method by combining the information from Tribal Behavioral Risk Factor Surveillance System and Behavioral Risk Factor Surveillance System data files.

Suggested Citation

  • Sixia Chen & Alexandra May Woodruff & Janis Campbell & Sara Vesely & Zheng Xu & Cuyler Snider, 2023. "Combining Probability and Nonprobability Samples by Using Multivariate Mass Imputation Approaches with Application to Biomedical Research," Stats, MDPI, vol. 6(2), pages 1-9, May.
  • Handle: RePEc:gam:jstats:v:6:y:2023:i:2:p:39-625:d:1141547
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/6/2/39/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/6/2/39/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jae Kwang Kim & Seho Park & Yilin Chen & Changbao Wu, 2021. "Combining non‐probability and probability survey samples through mass imputation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 941-963, July.
    2. Yilin Chen & Pengfei Li & Changbao Wu, 2020. "Doubly Robust Inference With Nonprobability Survey Samples," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 2011-2021, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ieva Burakauskaitė & Andrius Čiginas, 2023. "An Approach to Integrating a Non-Probability Sample in the Population Census," Mathematics, MDPI, vol. 11(8), pages 1-14, April.
    2. Chien-Min Huang & F. Jay Breidt, 2023. "A dual-frame approach for estimation with respondent-driven samples," METRON, Springer;Sapienza Università di Roma, vol. 81(1), pages 65-81, April.
    3. Xiaojun Mao & Zhonglei Wang & Shu Yang, 2023. "Matrix completion under complex survey sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(3), pages 463-492, June.
    4. Ramón Ferri-García & Jean-François Beaumont & Keven Bosa & Joanne Charlebois & Kenneth Chu, 2022. "Weight smoothing for nonprobability surveys," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 619-643, September.
    5. Xinyu Li & Wang Miao & Fang Lu & Xiao‐Hua Zhou, 2023. "Improving efficiency of inference in clinical trials with external control data," Biometrics, The International Biometric Society, vol. 79(1), pages 394-403, March.
    6. Luis Castro-Martín & María del Mar Rueda & Ramón Ferri-García & César Hernando-Tamayo, 2021. "On the Use of Gradient Boosting Methods to Improve the Estimation with Data Obtained with Self-Selection Procedures," Mathematics, MDPI, vol. 9(23), pages 1-23, November.
    7. Ramón Ferri-García & María del Mar Rueda & Andrés Cabrera-León, 2021. "Self-Perceived Health, Life Satisfaction and Related Factors among Healthcare Professionals and the General Population: Analysis of an Online Survey, with Propensity Score Adjustment," Mathematics, MDPI, vol. 9(7), pages 1-27, April.
    8. Li, Wei & Luo, Shanshan & Xu, Wangli, 2024. "Calibrated regression estimation using empirical likelihood under data fusion," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    9. Ray Chambers & Setareh Ranjbar & Nicola Salvati & Barbara Pacini, 2022. "Weighting, informativeness and causal inference, with an application to rainfall enhancement," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1584-1612, October.
    10. Bing Li & Constantine Gatsonis & Issa J. Dahabreh & Jon A. Steingrimsson, 2023. "Estimating the area under the ROC curve when transporting a prediction model to a target population," Biometrics, The International Biometric Society, vol. 79(3), pages 2382-2393, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:6:y:2023:i:2:p:39-625:d:1141547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.