IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v225y2024icp779-793.html
   My bibliography  Save this article

Estimating response propensities in nonprobability surveys using machine learning weighted models

Author

Listed:
  • Ferri-García, Ramón
  • Rueda-Sánchez, Jorge L.
  • Rueda, María del Mar
  • Cobo, Beatriz

Abstract

Propensity Score Adjustment (PSA) is a widely accepted method to reduce selection bias in nonprobability samples. In this approach, the (unknown) response probability of each individual is estimated in a nonprobability sample, using a reference probability sample. This, the researcher obtains a representation of the target population, reflecting the differences (for a set of auxiliary variables) between the population and the nonprobability sample, from which response probabilities can be estimated.

Suggested Citation

  • Ferri-García, Ramón & Rueda-Sánchez, Jorge L. & Rueda, María del Mar & Cobo, Beatriz, 2024. "Estimating response propensities in nonprobability surveys using machine learning weighted models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 779-793.
  • Handle: RePEc:eee:matcom:v:225:y:2024:i:c:p:779-793
    DOI: 10.1016/j.matcom.2024.06.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424002374
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.06.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramón Ferri-García & Jean-François Beaumont & Keven Bosa & Joanne Charlebois & Kenneth Chu, 2022. "Weight smoothing for nonprobability surveys," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 619-643, September.
    2. Lingxiao Wang & Barry I. Graubard & Hormuzd A. Katki & and Yan Li, 2020. "Improving external validity of epidemiologic cohort analyses: a kernel weighting approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1293-1311, June.
    3. Yilin Chen & Pengfei Li & Changbao Wu, 2020. "Doubly Robust Inference With Nonprobability Survey Samples," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 2011-2021, December.
    4. Luis Castro-Martín & María del Mar Rueda & Ramón Ferri-García & César Hernando-Tamayo, 2021. "On the Use of Gradient Boosting Methods to Improve the Estimation with Data Obtained with Self-Selection Procedures," Mathematics, MDPI, vol. 9(23), pages 1-23, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis Castro-Martín & María del Mar Rueda & Ramón Ferri-García & César Hernando-Tamayo, 2021. "On the Use of Gradient Boosting Methods to Improve the Estimation with Data Obtained with Self-Selection Procedures," Mathematics, MDPI, vol. 9(23), pages 1-23, November.
    2. María del Mar Rueda & Sergio Martínez-Puertas & Luis Castro-Martín, 2022. "Methods to Counter Self-Selection Bias in Estimations of the Distribution Function and Quantiles," Mathematics, MDPI, vol. 10(24), pages 1-19, December.
    3. Ieva Burakauskaitė & Andrius Čiginas, 2023. "An Approach to Integrating a Non-Probability Sample in the Population Census," Mathematics, MDPI, vol. 11(8), pages 1-14, April.
    4. Chien-Min Huang & F. Jay Breidt, 2023. "A dual-frame approach for estimation with respondent-driven samples," METRON, Springer;Sapienza Università di Roma, vol. 81(1), pages 65-81, April.
    5. Xiaojun Mao & Zhonglei Wang & Shu Yang, 2023. "Matrix completion under complex survey sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(3), pages 463-492, June.
    6. Ramón Ferri-García & Jean-François Beaumont & Keven Bosa & Joanne Charlebois & Kenneth Chu, 2022. "Weight smoothing for nonprobability surveys," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 619-643, September.
    7. Xinyu Li & Wang Miao & Fang Lu & Xiao‐Hua Zhou, 2023. "Improving efficiency of inference in clinical trials with external control data," Biometrics, The International Biometric Society, vol. 79(1), pages 394-403, March.
    8. Sixia Chen & Alexandra May Woodruff & Janis Campbell & Sara Vesely & Zheng Xu & Cuyler Snider, 2023. "Combining Probability and Nonprobability Samples by Using Multivariate Mass Imputation Approaches with Application to Biomedical Research," Stats, MDPI, vol. 6(2), pages 1-9, May.
    9. Lingxiao Wang & Barry I. Graubard & Hormuzd A. Katki & Yan Li, 2022. "Efficient and robust propensity‐score‐based methods for population inference using epidemiologic cohorts," International Statistical Review, International Statistical Institute, vol. 90(1), pages 146-164, April.
    10. Ramón Ferri-García & María del Mar Rueda & Andrés Cabrera-León, 2021. "Self-Perceived Health, Life Satisfaction and Related Factors among Healthcare Professionals and the General Population: Analysis of an Online Survey, with Propensity Score Adjustment," Mathematics, MDPI, vol. 9(7), pages 1-27, April.
    11. Li, Wei & Luo, Shanshan & Xu, Wangli, 2024. "Calibrated regression estimation using empirical likelihood under data fusion," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    12. Ray Chambers & Setareh Ranjbar & Nicola Salvati & Barbara Pacini, 2022. "Weighting, informativeness and causal inference, with an application to rainfall enhancement," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1584-1612, October.
    13. Bing Li & Constantine Gatsonis & Issa J. Dahabreh & Jon A. Steingrimsson, 2023. "Estimating the area under the ROC curve when transporting a prediction model to a target population," Biometrics, The International Biometric Society, vol. 79(3), pages 2382-2393, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:225:y:2024:i:c:p:779-793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.