IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v6y2023i2p38-616d1139579.html
   My bibliography  Save this article

Big Data Analytics and Machine Learning in Supply Chain 4.0: A Literature Review

Author

Listed:
  • Elena Barzizza

    (Department of Management Engineering, University of Padova, 35100 Padova, Italy)

  • Nicolò Biasetton

    (Department of Management Engineering, University of Padova, 35100 Padova, Italy)

  • Riccardo Ceccato

    (Department of Management Engineering, University of Padova, 35100 Padova, Italy)

  • Luigi Salmaso

    (Department of Management Engineering, University of Padova, 35100 Padova, Italy)

Abstract

Owing to the development of the technologies of Industry 4.0, recent years have witnessed the emergence of a new concept of supply chain management, namely Supply Chain 4.0 (SC 4.0). Huge investments in information technology have enabled manufacturers to trace the intangible flow of information, but instruments are required to take advantage of the available data sources: big data analytics (BDA) and machine learning (ML) represent important tools for this task. Use of advanced technologies can improve supply chain performances and support reaching strategic goals, but their implementation is challenging in supply chain management. The aim of this study was to understand the main benefits, challenges, and areas of application of BDA and ML in SC 4.0 as well as to understand the BDA and ML techniques most commonly used in the field, with a particular focus on nonparametric techniques. To this end, we carried out a literature review. From our analysis, we identified three main gaps, namely, the need for appropriate analytical tools to manage challenging data configurations; the need for a more reliable link with practice; the need for instruments to select the most suitable BDA or ML techniques. As a solution, we suggest and comment on two viable solutions: nonparametric statistics, and sentiment analysis and clustering.

Suggested Citation

  • Elena Barzizza & Nicolò Biasetton & Riccardo Ceccato & Luigi Salmaso, 2023. "Big Data Analytics and Machine Learning in Supply Chain 4.0: A Literature Review," Stats, MDPI, vol. 6(2), pages 1-21, May.
  • Handle: RePEc:gam:jstats:v:6:y:2023:i:2:p:38-616:d:1139579
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/6/2/38/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/6/2/38/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Gang & Gunasekaran, Angappa & Ngai, Eric W.T. & Papadopoulos, Thanos, 2016. "Big data analytics in logistics and supply chain management: Certain investigations for research and applications," International Journal of Production Economics, Elsevier, vol. 176(C), pages 98-110.
    2. Singh, Akshit & Shukla, Nagesh & Mishra, Nishikant, 2018. "Social media data analytics to improve supply chain management in food industries," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 398-415.
    3. Kalaitzi, Dimitra & Tsolakis, Naoum, 2022. "Supply chain analytics adoption: Determinants and impacts on organisational performance and competitive advantage," International Journal of Production Economics, Elsevier, vol. 248(C).
    4. Tino T. Herden & Steffen Bunzel, 2018. "Archetypes of Supply Chain Analytics Initiatives—An Exploratory Study," Logistics, MDPI, vol. 2(2), pages 1-20, May.
    5. Yu, Wantao & Chavez, Roberto & Jacobs, Mark A. & Feng, Mengying, 2018. "Data-driven supply chain capabilities and performance: A resource-based view," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 371-385.
    6. Jebum Pyun & Jin Sung Rha, 2021. "Review of Research on Digital Supply Chain Management Using Network Text Analysis," Sustainability, MDPI, vol. 13(17), pages 1-24, September.
    7. Tino T. Herden & Benjamin Nitsche & Benno Gerlach, 2020. "Overcoming Barriers in Supply Chain Analytics—Investigating Measures in LSCM Organizations," Logistics, MDPI, vol. 4(1), pages 1-27, February.
    8. Raj Kumar Bachar & Shaktipada Bhuniya & Santanu Kumar Ghosh & Biswajit Sarkar, 2022. "Controllable Energy Consumption in a Sustainable Smart Manufacturing Model Considering Superior Service, Flexible Demand, and Partial Outsourcing," Mathematics, MDPI, vol. 10(23), pages 1-29, November.
    9. Fortunato Pesarin & Luigi Salmaso, 2010. "Finite-sample consistency of combination-based permutation tests with application to repeated measures designs," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(5), pages 669-684.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Noman Shafique & Ammar Rashid & Sook Fern Yeo & Umar Adeel, 2023. "Transforming Supply Chains: Powering Circular Economy with Analytics, Integration and Flexibility Using Dual Theory and Deep Learning with PLS-SEM-ANN Analysis," Sustainability, MDPI, vol. 15(15), pages 1-23, August.
    2. Li, Ying & Dai, Jing & Cui, Li, 2020. "The impact of digital technologies on economic and environmental performance in the context of industry 4.0: A moderated mediation model," International Journal of Production Economics, Elsevier, vol. 229(C).
    3. Chen, Xi & Wong, Tse Chiu, 2021. "Application of social media data in supply chain management : A systematic review," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Ringle, Christian M. & Blecker, Thorsten (ed.), Adapting to the Future: How Digitalization Shapes Sustainable Logistics and Resilient Supply Chain Management. Proceedings of the Hamburg Internationa, volume 31, pages 499-523, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    4. Dong-Hui Jin & Hyun-Jung Kim, 2018. "Integrated Understanding of Big Data, Big Data Analysis, and Business Intelligence: A Case Study of Logistics," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    5. Sina Davoudi & Peter Stasinopoulos & Nirajan Shiwakoti, 2024. "Two Decades of Advancements in Cold Supply Chain Logistics for Reducing Food Waste: A Review with Focus on the Meat Industry," Sustainability, MDPI, vol. 16(16), pages 1-67, August.
    6. Zhan, Yuanzhu & Han, Runyue & Tse, Mike & Ali, Mohd Helmi & Hu, Jiayao, 2021. "A social media analytic framework for improving operations and service management: A study of the retail pharmacy industry," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    7. Tino T. Herden & Benjamin Nitsche & Benno Gerlach, 2020. "Overcoming Barriers in Supply Chain Analytics—Investigating Measures in LSCM Organizations," Logistics, MDPI, vol. 4(1), pages 1-27, February.
    8. Hans-Joachim Schramm & Carolin Nicole Czaja & Michael Dittrich & Matthias Mentschel, 2019. "Current Advancements of and Future Developments for Fourth Party Logistics in a Digital Future," Logistics, MDPI, vol. 3(1), pages 1-17, February.
    9. Sarkar, Biswajit & Seok, Hyesung & Jana, Tapas Kumar & Dey, Bikash Koli, 2023. "Is the system reliability profitable for retailing and consumer service of a dynamical system under cross-price elasticity of demand?," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).
    10. Leonardo de Assis Santos & Leonardo Marques, 2022. "Big data analytics for supply chain risk management: research opportunities at process crossroads," Post-Print hal-03766121, HAL.
    11. Ma, Jie & Tse, Ying Kei & Wang, Xiaojun & Zhang, Minhao, 2019. "Examining customer perception and behaviour through social media research – An empirical study of the United Airlines overbooking crisis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 192-205.
    12. Jung, Sungkyu & Sen, Arusharka & Marron, J.S., 2012. "Boundary behavior in High Dimension, Low Sample Size asymptotics of PCA," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 190-203.
    13. Govindan, Kannan & Kannan, Devika & Jørgensen, Thomas Ballegård & Nielsen, Tim Straarup, 2022. "Supply Chain 4.0 performance measurement: A systematic literature review, framework development, and empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    14. Papanagnou, Christos & Seiler, Andreas & Spanaki, Konstantina & Papadopoulos, Thanos & Bourlakis, Michael, 2022. "Data-driven digital transformation for emergency situations: The case of the UK retail sector," International Journal of Production Economics, Elsevier, vol. 250(C).
    15. Vendrell-Herrero, Ferran & Bustinza, Oscar F. & Opazo-Basaez, Marco, 2021. "Information technologies and product-service innovation: The moderating role of service R&D team structure," Journal of Business Research, Elsevier, vol. 128(C), pages 673-687.
    16. Yu, Wantao & Zhao, Gen & Liu, Qi & Song, Yongtao, 2021. "Role of big data analytics capability in developing integrated hospital supply chains and operational flexibility: An organizational information processing theory perspective," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    17. Videsh Desingh & Baskaran R, 2022. "Internet of Things adoption barriers in the Indian healthcare supply chain: An ISM‐fuzzy MICMAC approach," International Journal of Health Planning and Management, Wiley Blackwell, vol. 37(1), pages 318-351, January.
    18. Surajit Bag & Muhammad Sabbir Rahman, 2024. "Navigating circular economy: Unleashing the potential of political and supply chain analytics skills among top supply chain executives for environmental orientation, regenerative supply chain practice," Business Strategy and the Environment, Wiley Blackwell, vol. 33(2), pages 504-528, February.
    19. Muhammad Irfan & Mingzheng Wang & Naeem Akhtar, 2019. "Impact of IT capabilities on supply chain capabilities and organizational agility: a dynamic capability view," Operations Management Research, Springer, vol. 12(3), pages 113-128, December.
    20. Vandana & Shiv Raj Singh & Mitali Sarkar & Biswajit Sarkar, 2023. "Effect of Learning and Forgetting on Inventory Model under Carbon Emission and Agile Manufacturing," Mathematics, MDPI, vol. 11(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:6:y:2023:i:2:p:38-616:d:1139579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.