IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v22y2010i5p669-684.html
   My bibliography  Save this article

Finite-sample consistency of combination-based permutation tests with application to repeated measures designs

Author

Listed:
  • Fortunato Pesarin
  • Luigi Salmaso

Abstract

In several application fields, e.g. genetics, image and functional analysis, several biomedical and social experimental and observational studies, etc. it may happen that the number of observed variables is much larger than that of subjects. It can be proved that, for a given and fixed number of subjects, when the number of variables increases and the noncentrality parameter of the underlying population distribution increases with respect to each added variable, then power of multivariate permutation tests based on Pesarin's combining functions [Pesarin, F. (2001), Multivariate Permutation Tests with Applications in Biostatistics, New York: Wiley, Chichester] is monotonically increasing. These results confirm and extend those presented by [Blair, Higgins, Karniski and Kromrey (1994), ‘A Study of Multivariate Permutation Tests which May Replace Hotelling's T2 Test in Prescribed Circumstances’, Multivariate Behavioral Research 29, 141–163]. Moreover, they allow us to introduce the property of finite-sample consistency for those kinds of combination-based permutation tests. Sufficient conditions are given in order that the rejection rate converges to one, for fixed sample sizes at any attainable α -values, when the number of variables diverges. A simulation study and a real case study are presented.

Suggested Citation

  • Fortunato Pesarin & Luigi Salmaso, 2010. "Finite-sample consistency of combination-based permutation tests with application to repeated measures designs," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(5), pages 669-684.
  • Handle: RePEc:taf:gnstxx:v:22:y:2010:i:5:p:669-684
    DOI: 10.1080/10485250902807407
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485250902807407
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485250902807407?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jung, Sungkyu & Sen, Arusharka & Marron, J.S., 2012. "Boundary behavior in High Dimension, Low Sample Size asymptotics of PCA," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 190-203.
    2. Härdle, Wolfgang Karl & Ritov, Ya’acov & Wang, Weining, 2015. "Tie the straps: Uniform bootstrap confidence bands for semiparametric additive models," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 129-145.
    3. Friedrich, Sarah & Brunner, Edgar & Pauly, Markus, 2017. "Permuting longitudinal data in spite of the dependencies," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 255-265.
    4. Jesse Hemerik & Jelle J. Goeman & Livio Finos, 2020. "Robust testing in generalized linear models by sign flipping score contributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 841-864, July.
    5. Arboretti, Rosa & Bonnini, Stefano & Corain, Livio & Salmaso, Luigi, 2014. "A permutation approach for ranking of multivariate populations," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 39-57.
    6. Elena Barzizza & Nicolò Biasetton & Riccardo Ceccato & Luigi Salmaso, 2023. "Big Data Analytics and Machine Learning in Supply Chain 4.0: A Literature Review," Stats, MDPI, vol. 6(2), pages 1-21, May.
    7. Stefano Bonnini & Michela Borghesi, 2022. "Relationship between Mental Health and Socio-Economic, Demographic and Environmental Factors in the COVID-19 Lockdown Period—A Multivariate Regression Analysis," Mathematics, MDPI, vol. 10(18), pages 1-15, September.
    8. Rosa Arboretti & Elena Barzizza & Nicolò Biasetton & Riccardo Ceccato & Livio Corain & Luigi Salmaso, 2022. "A Multi-Aspect Permutation Test for Goodness-of-Fit Problems," Stats, MDPI, vol. 5(2), pages 1-11, June.
    9. Chiara Brombin & Luigi Salmaso & Lara Fontanella & Luigi Ippoliti, 2015. "Nonparametric combination-based tests in dynamic shape analysis," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(4), pages 460-484, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:22:y:2010:i:5:p:669-684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.