Resampling Plans and the Estimation of Prediction Error
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jing Lei & Max G’Sell & Alessandro Rinaldo & Ryan J. Tibshirani & Larry Wasserman, 2018. "Distribution-Free Predictive Inference for Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1094-1111, July.
- Saharon Rosset & Ryan J. Tibshirani, 2020. "From Fixed-X to Random-X Regression: Bias-Variance Decompositions, Covariance Penalties, and Prediction Error Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 138-151, January.
- Saharon Rosset & Ryan J. Tibshirani, 2020. "From Fixed-X to Random-X Regression: Bias-Variance Decompositions, Covariance Penalties, and Prediction Error Estimation: Rejoinder," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 161-162, January.
- Bradley Efron, 2004. "The Estimation of Prediction Error: Covariance Penalties and Cross-Validation," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 619-632, January.
- Zhang, Yongli & Yang, Yuhong, 2015. "Cross-validation for selecting a model selection procedure," Journal of Econometrics, Elsevier, vol. 187(1), pages 95-112.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Theo Dijkstra, 2014. "Ridge regression and its degrees of freedom," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(6), pages 3185-3193, November.
- Acharki, Naoufal & Bertoncello, Antoine & Garnier, Josselin, 2023. "Robust prediction interval estimation for Gaussian processes by cross-validation method," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
- Sieds, 2012. "Complete Volume LXVI n.1 2012," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 66(1), pages 1-296.
- Brian D. Williamson & Peter B. Gilbert & Marco Carone & Noah Simon, 2021. "Nonparametric variable importance assessment using machine learning techniques," Biometrics, The International Biometric Society, vol. 77(1), pages 9-22, March.
- Tengyuan Liang, 2022. "Universal prediction band via semi‐definite programming," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1558-1580, September.
- Hettihewa, Samanthala & Saha, Shrabani & Zhang, Hanxiong, 2018. "Does an aging population influence stock markets? Evidence from New Zealand," Economic Modelling, Elsevier, vol. 75(C), pages 142-158.
- Mendez, Guillermo & Lohr, Sharon, 2011. "Estimating residual variance in random forest regression," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2937-2950, November.
- Yanagihara, Hirokazu & Satoh, Kenichi, 2010. "An unbiased Cp criterion for multivariate ridge regression," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1226-1238, May.
- Pedro Delicado & Daniel Peña, 2023. "Understanding complex predictive models with ghost variables," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 107-145, March.
- Yuxun Wang & Liang Fang & Chao Liu & Lanxin Wang & Huimei Xu, 2023. "The Influential Factors of the Habitat Quality of the Red-crowned Crane: A Case Study of Yancheng, Jiangsu Province, China," Land, MDPI, vol. 12(6), pages 1-20, June.
- Zhang, Xinyu & Yu, Jihai, 2018. "Spatial weights matrix selection and model averaging for spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 203(1), pages 1-18.
- Chunming Zhang, 2008. "Prediction Error Estimation Under Bregman Divergence for Non‐Parametric Regression and Classification," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 496-523, September.
- Giessing, Alexander & He, Xuming, 2019. "On the predictive risk in misspecified quantile regression," Journal of Econometrics, Elsevier, vol. 213(1), pages 235-260.
- Wang, Sheng & Zimmerman, Dale L. & Breheny, Patrick, 2020. "Sparsity-regularized skewness estimation for the multivariate skew normal and multivariate skew t distributions," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
- James Younker, 2022. "Calculating Effective Degrees of Freedom for Forecast Combinations and Ensemble Models," Discussion Papers 2022-19, Bank of Canada.
- Wang, You-Gan & Hin, Lin-Yee, 2010. "Modeling strategies in longitudinal data analysis: Covariate, variance function and correlation structure selection," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3359-3370, December.
- Hu, Jianming & Luo, Qingxi & Tang, Jingwei & Heng, Jiani & Deng, Yuwen, 2022. "Conformalized temporal convolutional quantile regression networks for wind power interval forecasting," Energy, Elsevier, vol. 248(C).
- Daudin, Jean-Jacques & Mary-Huard, Tristan, 2008. "Estimation of the conditional risk in classification: The swapping method," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3220-3232, February.
- Sotiropoulou, Kalliopi F. & Vavatsikos, Athanasios P. & Botsaris, Pantelis N., 2024. "A hybrid AHP-PROMETHEE II onshore wind farms multicriteria suitability analysis using kNN and SVM regression models in northeastern Greece," Renewable Energy, Elsevier, vol. 221(C).
- Solari, Aldo & Djordjilović, Vera, 2022. "Multi split conformal prediction," Statistics & Probability Letters, Elsevier, vol. 184(C).
More about this item
Keywords
cross-validation; Cp ; AIC; Q -class; conformal inference; random forests; bagging;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:4:y:2021:i:4:p:63-1115:d:706231. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.